Synthesis 2021; 53(24): 4700-4708
DOI: 10.1055/a-1528-8357
paper

Methylation Alkynylation of Terminal Alkenes via 1,2-Alkynyl Migration Using Dicumyl Peroxide as the Methyl Source

Yi-qun Qin
a   Advanced Catalytic Engineer Research Center of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China
,
De Chen
a   Advanced Catalytic Engineer Research Center of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China
,
Liang Liu
a   Advanced Catalytic Engineer Research Center of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China
,
Jia-jia Zhang
a   Advanced Catalytic Engineer Research Center of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China
,
Xin-ju Peng
a   Advanced Catalytic Engineer Research Center of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China
,
Yong-yue Luo
b   Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 440800, P. R. of China
,
Wei Deng
a   Advanced Catalytic Engineer Research Center of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China
,
Jiannan Xiang
a   Advanced Catalytic Engineer Research Center of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China
› Author Affiliations
We are grateful for financial support from the National Natural Science­ Foundation of China (No. 21502049 and 51573040) and the Natural Science Foundation of Hunan Province (No. 2018JJ2032).


Abstract

The metal-free oxidative alkene methylation/alkynylation of 1,4-enyn-3-ols with an organic peroxide as the methyl source has been developed, which provides straightforward and practical access to the challenging quaternary-carbon-containing but-3-yn-1-ones. The method is reasoned to go through methylation of functional alkenes utilizing dicumyl peroxide as the methylating reagent and subsequent intermolecular cyclization/1,2-alkynyl migration. This reaction has an excellent functional group tolerance, broad substrate scope, and exquisite selectivity.

Supporting Information



Publication History

Received: 08 May 2021

Accepted after revision: 15 June 2021

Accepted Manuscript online:
15 June 2021

Article published online:
23 August 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Tan F.-L, Song R.-J, Hu M, Li J.-H. Org. Lett. 2016; 18: 3198
  • 2 For alkenyl migration, see: Tang X, Studer A. Angew. Chem. Int. Ed. 2018; 57: 814

    • For cyano migration, see:
    • 3a Ji M, Wu Z, Yu J, Wan X, Zhu C. Adv. Synth. Catal. 2017; 359: 1959
    • 3b Ren R, Wu Z, Huan L, Zhu C. Adv. Synth. Catal. 2017; 359: 3052
    • 3c Wang N, Li L, Li Z.-L, Yang N.-Y, Guo Z, Zhang H.-X, Liu X.-Y. Org. Lett. 2016; 18: 6026
    • 3d Wu Z, Ren R, Zhu C. Angew. Chem. Int. Ed. 2016; 55: 10821

      For heteroaryl migration, see:
    • 4a Wu Z, Wang D, Liu Y, Huan L, Zhu C. J. Am. Chem. Soc. 2017; 139: 1388
    • 4b Gu L.-J, Gao Y, Ai X.-H, Jin C, He Y.-H, Li G.-P, Yuan M.-L. Chem. Commun. 2017; 53: 12946
  • 5 For formyl migration, see: Li Z.-L, Li X.-H, Wang N, Yang N.-Y, Liu X.-Y. Angew. Chem. Int. Ed. 2016; 55: 15100
  • 6 Liu X, Xiong F, Huang X, Xu L, Li P, Wu X. Angew. Chem. Int. Ed. 2013; 52: 6962
    • 7a Chen Z.-M, Zhang X.-M, Tu Y.-Q. Chem. Soc. Rev. 2015; 44: 5220
    • 7b Huang H.-L, Yan H, Yang C, Xia W. Chem. Commun. 2015; 51: 4910
    • 7c Xu P, Hu K, Gu Z, Cheng Y, Zhu C. Chem. Commun. 2015; 51: 7222
  • 8 Chu X.-Q, Meng H, Zi Y, Xu X.-P, Ji S.-J. Chem. Commun. 2014; 50: 9718
    • 9a Li Y, Liu B, Li H.-B, Wang Q, Li J.-H. Chem. Commun. 2015; 51: 1024
    • 9b Song RJ, Tu Y.-Q, Zhu D.-Y, Zhang F.-M, Wang S.-H. Chem. Commun. 2015; 51: 749

      For radical-mediated difunctionalization of alkenes, see:
    • 10a Sauer GS, Lin S. ACS Catal. 2018; 8: 5175
    • 10b Koike T, Akita M. Chem 2018; 4: 409
    • 10c Lan X.-W, Wang N.-X, Xing Y. Eur. J. Org. Chem. 2017; 5821
    • 10d Courant T, Masson G. J. Org. Chem. 2016; 81: 6945
    • 10e Lin J, Song R.-J, Hu M, Li J.-H. Chem. Rec. 2019; 19: 440

    • For other types of difunctionalization of alkenes, see:
    • 10f Yin G.-Y, Mu X, Liu G.-S. Acc. Chem. Res. 2016; 49: 2413
    • 10g Muniz K, Martinez C. J. Org. Chem. 2013; 78: 2168
    • 10h Bataille CJ. R, Donohoe T.-J. Chem. Soc. Rev. 2011; 40: 114
    • 10i Noe MC, Letavic MA, Snow SL. Org. React. 2005; 66: 109
    • 11a Wu XX, Wu S, Zhu C. Tetrahedron Lett. 2018; 59: 1328
    • 11b Wu XX, Zhu C. Acc. Chem. Res. 2020; 53: 1620
    • 11c Yu JJ, Wang DP, Xu Y, Wu Z, Zhu C. Adv. Synth. Catal. 2018; 360: 744
    • 11d Tang NN, Yang S, Wu XX, Zhu C. Tetrahedron 2019; 75: 1639
    • 12a Xu Y, Wu Z, Jiang J, Ke Z, Zhu C. Angew. Chem. Int. Ed. 2017; 56: 4545
    • 12b Tang XJ, Studer A. Chem. Sci. 2017; 8: 6888
    • 12c Tang NN, Shao X, Wang MY, Wu XX, Zhu C. Acta Chim. Sinica 2019; 77: 922
    • 13a Zhao Q, Tu SJ, Jiang B. Acta Chim. Sinica 2019; 77: 927
    • 13b Zhang P, Shi HN, Zhang TS, Cai PJ, Jiang B, Tu SJ. Chin. J. Org. Chem. 2020; 40: 423
  • 14 Zhao Q, Ji X.-S, Gao Y.-Y, Hao W.-J, Zhang K.-Y, Tu S.-J, Jiang B. Org. Lett. 2018; 20: 3596
  • 15 Zhao Q, Hao W.-J, Shi H.-N, Xu T, Tu S.-J, Jiang B. Org. Lett. 2019; 21: 9784
  • 16 Li M, Zhu X.-Y, Qiu Y.-F, Han Y.-P, Xia Y, Wang C.-T, Li X.-S, Wei W.-X, Liang Y.-M. Adv. Synth. Catal. 2019; 361: 2945
  • 17 Jin S.-N, Sun S, Yu J.-T, Cheng J. J. Org. Chem. 2019; 84: 11177
  • 18 Dai Q, Yu J.-T, Feng X.-M, Jiang Y, Yang H.-T, Cheng J. Adv. Synth. Catal. 2014; 356: 3341

    • For reviews, see:
    • 19a Schonherr H, Cernak T. Angew. Chem. Int. Ed. 2013; 52: 12256
    • 19b Barreiro EJ, Kummerle AE, Fraga CA. M. Chem. Rev. 2011; 111: 5215
    • 19c Challenger F. Chem. Rev. 1945; 36: 315
    • 19d Matthews RG, Smith AE, Zhou Z-S, Taurog RE, Bandarian V, Evans JC, Ludwig M. Helv. Chim. Acta 2003; 86: 3939
    • 19e Grewal SI, Rice JC. Curr. Opin. Cell Biol. 2004; 16: 230
    • 19f Nakayama JI, Rice JC, Strahl BD, Allis CD, Grewal SI. Science 2001; 292: 110
    • 19g Negishi E.-i, Matsushita H. Org. Synth. 1984; 62: 31
    • 19h Wienken CJ, Baaske P, Braun D. Nucleic Acids Res. 2011; 39: 152

      For recent examples, see:
    • 20a Shamovsky I, de Graaf C, Alderin L, Bengtsson M, Bladh HK, Borjesson L, Connolly S, Dyke HJ, van den Heuvel M, Johansson H, Josefsson BG. R, Kristoffersson A, Linnanen T, Lisius A, Mannikko R, Norden B, Price S, Ripa L, Rognan D, Rosendahl A, Skrinjar M, Urbahns K. J. Med. Chem. 2009; 52: 7706
    • 20b Gui JH, Zhou QH, Pan CM, Yabe Y, Burns A, Collins M, Ornelas M, Ishihara Y, Baran P. J. Am. Chem. Soc. 2014; 136: 4853
    • 20c Leung CS, Leung SS. F, Tirado-Rives J, Jorgensen WL. J. Med. Chem. 2012; 55: 4489
    • 20d Pan F, Lei ZQ, Wang H, Li H, Sun J, Shi ZJ. Angew. Chem. Int. Ed. 2013; 52: 2063
    • 20e Araki M, Maeda M, Kawazoe Y. Tetrahedron 1976; 32: 337
    • 20f Levy M, Szwarc M. J. Am. Chem. Soc. 1955; 77: 1949

      For methylation using peroxides as the methyl source, see:
    • 21a Kubo T, Chatani N. Org. Lett. 2016; 18: 1698
    • 21b Xia Q.-Q, Liu X.-L, Zhang Y.-J, Chen C, Chen W.-Z. Org. Lett. 2013; 15: 3326
    • 21c Xu Z.-B, Yan C.-X, Liu Z.-Q. Org. Lett. 2014; 16: 5670
    • 21d Zhang Y.-H, Feng J.-Q, Li C.-J. J. Am. Chem. Soc. 2008; 130: 2900
    • 21e Fan J.-H, Zhou M.-B, Liu Y, Wei W.-T, Ouyang X.-H, Song R.-J, Li J.-H. Synlett 2014; 25: 657
    • 21f Zhu Y, Yan H, Lu L.-H, Liu D.-F, Rong G.-W, Mao J.-C. J. Org. Chem. 2013; 78: 9898
    • 21g Dai Q, Yu JT, Jiang Y, Guo S-J, Yang H-T, Cheng J. Chem. Commun. 2014; 50: 3865
    • 21h Guo S.-J, Wang Q, Jiang Y, Yu J.-T. J. Org. Chem. 2014; 79: 11285
    • 21i Teng F, Cheng J, Yu J.-T. Org. Biomol. Chem. 2015; 13: 9934
  • 22 Xu C.-H, Li Y, Li J.-H, Xiang J.-N, Deng W. Sci. China Chem. 2019; 62: 1463
  • 23 Yu J.-X, Teng F, Xiang J.-N, Deng W, Li J.-H. Org. Lett. 2019; 21: 9434