Synlett 2021; 32(16): 1670-1674
DOI: 10.1055/a-1379-1584
cluster
Modern Nickel-Catalyzed Reactions

Nickel-Catalyzed Ligand-Free Hiyama Coupling of Aryl Bromides and Vinyltrimethoxysilane

Shichao Wei
a   College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. of China
b   State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
,
Yongjun Mao
a   College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. of China
,
Shi-Liang Shi
a   College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. of China
b   State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
› Author Affiliations
This work was financially supported by the National Natural Science Foundation of China (NSF, Grant No. 91856111, 21871288, 21690074, 21821002), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB20000000).


Abstract

We herein disclose the first Ni-catalyzed Hiyama coupling of aryl halides with vinylsilanes. This protocol uses cheap, nontoxic, and stable vinyltrimethoxysilane as the vinyl donor, proceeds under mild and ligand-free conditions, furnishing a diverse variety of styrene derivatives in high yields with excellent functional group compatibility.

Supporting Information



Publication History

Received: 30 November 2020

Accepted after revision: 31 January 2021

Accepted Manuscript online:
31 January 2021

Article published online:
16 February 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Grubbs RH. Tetrahedron 2004; 60: 7117
    • 1b Ogba OM, Warner NC, Grubbs RH. Chem. Soc. Rev. 2018; 47: 4510
  • 2 Beletskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009
    • 3a Chen J, Lu Z. Org. Chem. Front. 2018; 5: 260
    • 3b Chen J, Guo J, Lu Z. Chin. J. Chem. 2018; 36: 1075
    • 3c Fan WW, Li L, Zhang GQ. J. Org. Chem. 2019; 84: 5987
    • 3d Pirnot MT, Wang Y.-M, Buchwald SL. Angew. Chem. Int. Ed. 2016; 55: 48
    • 3e Agbossou F, Carpentier JF, Mortreux M. Chem. Rev. 1995; 95: 2485
  • 4 Xia QH, Ge HQ, Ye CP, Liu ZM, Su KX. Chem. Rev. 2005; 105: 1603
    • 5a Hirao A, Goseki R, Ishizone T. Macromolecules 2014; 47: 1883
    • 5b Goseki R, Tanaka S, Ishizone T, Hirao A. React. Funct. Polym. 2018; 127: 94
  • 6 Emerson WS. Chem. Rev. 1949; 45: 347
    • 7a Maryanoff B, Reitz A. Chem. Rev. 1989; 89: 863
    • 7b Bisceglia JA, Orelli LR. Curr. Org. Chem. 2012; 16: 2206
  • 8 Chinchilla R, Najera C. Chem. Rev. 2014; 114: 1783
  • 9 Denmark S, Butler CR. Chem. Commun. 2009; 20
  • 10 Bumagin NA, Luzikova EV. J. Organomet. Chem. 1997; 532: 271
  • 11 Hornillos V, Giannerini M, Vila C, Fañanás-Mastrala M, Feringa BL. Chem. Sci. 2015; 6: 1394
  • 12 Schumann H, Kaufmann J, Schmalz H.-G, Bottcher A, Gotov B. Synlett 2003; 1783
    • 13a Kerins F, O’Shea DF. J. Org. Chem. 2002; 67: 4968
    • 13b Kesslers A, Coleman CM, Charoenying P, O’Shea DF. J. Org. Chem. 2004; 69: 7836
    • 13c Molander GA, Rivero MR. Org. Lett. 2002; 4: 107
    • 13d Barder TE, Walker SD, Martinelli JR, Buchwald SL. J. Am. Chem. Soc. 2005; 127: 4685
    • 13e Alacid E, Najera C. J. Org. Chem. 2009; 74: 8191
    • 13f Civicos JF, Alonso DA, Najera C. Adv. Synth. Catal. 2011; 353: 1683
    • 14a Hatanaka Y, Hiyama T. J. Org. Chem. 1988; 53: 918
    • 14b Itami K, Nokami T, Yoshidaj J. J. Am. Chem. Soc. 2001; 123: 5600
    • 14c Hosoi K, Nozaki K, Hiyama T. Chem. Lett. 2002; 2: 138
    • 14d Nakao Y, Imanaka H, Sahoo AK, Yada A, Hiyama T. J. Am. Chem. Soc. 2005; 127: 6952
    • 14e Denmark SE, Sweis RF, Wehrli D. J. Am. Chem. Soc. 2004; 126: 4865
    • 14f Denmark SE, Butler CR. J. Am. Chem. Soc. 2008; 130: 3690
    • 14g Gordillo AL, Jesus ED, Carmen LM. J. Am. Chem. Soc. 2009; 131: 4584
    • 14h Premi C, Jain N. Eur. J. Org. Chem. 2013; 5493
    • 14i Yang C.-T, Han J, Liu J, Li Y, Zhang F, Yu H.-Z, Hu S, Wang X. Chem. Eur. J. 2018; 24: 10324
    • 14j Faßbender SI, Molloy JJ, Mück-Lichtenfeld C, Gilmour R. Angew. Chem. Int. Ed. 2019; 58: 18619
    • 15a William J, Scott WJ, Stille JK. J. Am. Chem. Soc. 1986; 108: 3033
    • 15b Grasa GA, Nolan SP. Org. Lett. 2001; 3: 119
    • 15c Littke AF, Schwarz L, Fu GC. J. Am. Chem. Soc. 2002; 124: 6343

      For selected reviews on Ni-catalyzed coupling reactions, see:
    • 16a Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
    • 16b Moragas T, Correa A, Martin R. Chem. Eur. J. 2014; 20: 8242
    • 16c Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
    • 16d Su B, Cao ZC, Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
    • 16e Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717
    • 16f Weix DJ. Acc. Chem. Res. 2015; 48: 1767
    • 16g Gu J, Wang X, Xue W, Gong H. Org. Chem. Front. 2015; 2: 1411
    • 16h Henrion M, Ritleng V, Chetcuti MJ. ACS Catal. 2015; 5: 1283
    • 16i Choi J, Fu GC. Science 2017; 356: eaaf7230
    • 16j Modern Organonickel Chemistry. Tamaru Y. Wiley-VCH; Weinheim: 2006
  • 17 Kiso Y, Yamamoto K, Tamao K, Kumada M. J. Am. Chem. Soc. 1972; 94: 4374
  • 18 Yamamoto T, Yamakawa T. J. Org. Chem. 2009; 74: 3603
  • 19 Liu J, Ren Q, Zhang X, Gong H. Angew. Chem. Int. Ed. 2016; 55: 15544

    • For reviews, see:
    • 20a Monfared A, Mohammadi B, Ahmadi S, Nikpassan M, Hosseinian A. RSC Adv. 2019; 9: 3185
    • 20b Organosilicon Chemistry. Hiyama T, Oestreich M. Wiley-VCH; Weinheim: 2019
    • 20c Komiyama T, Minami Y, Hiyama T. ACS Catal. 2017; 7: 631

      For selected examples on coupling reaction of aryl silicon compounds and alkyl halides, see:
    • 21a Lee J.-Y, Fu GC. J. Am. Chem. Soc. 2003; 125: 5616
    • 21b Powell DA, Fu GC. J. Am. Chem. Soc. 2004; 126: 7788
    • 21c Lee J.-Y, Fu GC. J. Am. Chem. Soc. 2003; 125: 5616
    • 21d Dai X, Strotman NA, Fu GC. J. Am. Chem. Soc. 2008; 130: 3302

      For selected examples on coupling reaction of aryl silicon compounds and aryl halides, see:
    • 22a Tang S, Takeda M, Nakao Y, Hiyamaz T. Chem. Commun. 2011; 47: 307
    • 22b Tang S, Li SH, Nakao Y, Hiyamaz T. Asian J. Org. Chem. 2013; 2: 416
    • 23a Zhang W.-B, Yang X.-T, Ma J.-B, Su Z.-M, Shi S.-L. J. Am. Chem. Soc. 2019; 141: 5628
    • 23b Cai Y, Zhang J.-W, Li F, Liu J.-M, Shi S.-L. ACS Catal. 2019; 9: 1
    • 23c Cai Y, Ye X, Liu S, Shi S.-L. Angew. Chem. Int. Ed. 2019; 58: 13433
    • 23d Shen D, Zhang W.-B, Li Z, Shi S.-L, Xu Y. Adv. Synth. Catal. 2020; 362: 1125
    • 23e Li Y.-Q, Li F, Shi S.-L. Chin. J. Chem. 2020; 38: 1035
    • 23f Cai Y, Ruan L.-X, Rahman A, Shi S.-L. Angew. Chem. Int. Ed. 2021; 60: in press DOI: 10.1002/anie.202015021.
    • 23g Li Y.-Q, Shi S.-L. Chin. J. Org. Chem. 2021; 41: in press, DOI: 10.6023/cjoc202101019.
  • 24 For a similar Pd-catalyzed C–O bond-forming reaction using vinyltrimethoxysilane and electron-deficient aryl halides, see: Milton EJ, Fuentes JA, Clarke ML. Org. Biomol. Chem. 2009; 7: 2645
    • 25a Pilcher AS, Ammon HL, DeShong P. J. Am. Chem. Soc. 1995; 117: 5166
    • 25b Pilcher AS, DeShong P. J. Org. Chem. 1996; 61: 6901
    • 26a Brescia M.-R, DeShong P. J. Org. Chem. 1998; 63: 3156
    • 26b Mowery ME, DeShong P. J. Org. Chem. 1999; 64: 3266
  • 27 General Procedure 1 In a nitrogen-filled glove box, aromatic halide (0.2 mmol, 1.0 equiv), 18-crown-6 (121.0 mg, 0.46 mmol, 2.3 equiv), KOMe (32.2 mg, 0.46 mmol, 2.3 equiv), NiCl2(glyme) (4.4 mg, 0.02 mmol, 10 mol%), and DMF (1.0 mL) were charged to an 8 mL vial equipped with a magnetic stirrer bar. The vinyltrimethoxysilane (68.0 mg, 0.46 mmol, 2.3 equiv) was added. The vial was removed from the glove box, and the reaction mixture was stirred at rt (35 °C) for 12 h. The reaction mixture was then diluted with EtOAc and washed with water. The organic phase was dried over Na2SO4, filtered, and concentrated, and the residue was purified by column chromatography on silica gel to give the product. 2-Methoxy-6-vinylnaphthalene (3a) Using general procedure 1: white solid, 31.0 mg, yield: 84%. 1H NMR (400 MHz, CDCl3): δ = 7.78–7.66 (m, 3 H), 7.62 (dd, J = 8.7, 1.7 Hz, 1 H), 7.19–7.10 (m, 2 H), 6.87 (dd, J = 17.6, 10.9 Hz, 1 H), 5.84 (dd, J = 17.6, 0.9 Hz, 1 H), 5.30 (dd, J = 10.9, 0.9 Hz, 1 H), 3.93 (s, 3 H). General Procedure 2 In a nitrogen-filled glove box, aromatic halide (0.2 mmol, 1.0 equiv), TBAT (270 mg, 0.5 mmol, 2.5 equiv), NiCl2(glyme) (4.4 mg, 0.02 mmol, 10 mol%), and DMA (1.0 mL) were charged to an 8 mL vial equipped with a magnetic stirrer bar. The vinyltrimethoxysilane (59.1 mg, 0.4 mmol, 2.0 equiv) was added. The vial was removed from the glove box, and the reaction mixture was stirred at rt (35 °C) for 12 h. The reaction mixture was then diluted with EtOAc and washed with water. The organic phase was dried over Na2SO4, filtered, and concentrated, and the residue was purified by column chromatography on silica gel to give the product. 2-Vinylnaphthalene (3b) Using general procedure 2: white solid, 25.5 mg, yield: 83%. 1H NMR (400 MHz, CDCl3): δ = 7.85–7.79 (m, 3 H), 7.76 (s, 1 H), 7.65 (dd, J = 8.6, 1.7 Hz, 1 H), 7.50–7.42 (m, 2 H), 6.90 (dd, J = 17.6, 10.9 Hz, 1 H), 5.89 (dd, J = 17.6, 0.8 Hz, 1 H), 5.35 (dd, J = 10.9, 0.8 Hz, 1 H).