Synthesis 2008(16): 2603-2609  
DOI: 10.1055/s-2008-1078602
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Reactions of Unsaturated Azides; Part 22: [¹] The Alkyne Azide Click Chemistry as a Synthetic Tool for the Generation of Cage-Like Triazole Compounds

Klaus Banert*a, Jens Wutkea, Tobias Rüfferb, Heinrich Langb
a Chemnitz University of Technology, Institute of Chemistry, Organic Chemistry, Strasse der Nationen 62, 09111 Chemnitz, Germany
Fax: +49(371)53121229; e-Mail: klaus.banert@chemie.tu-chemnitz.de;
b Chemnitz University of Technology, Institute of Chemistry, Inorganic Chemistry, Strasse der Nationen 62, 09111 Chemnitz, Germany
Further Information

Publication History

Received 17 January 2008
Publication Date:
17 July 2008 (online)

Abstract

The applicability of the copper(I)-catalyzed click reaction of terminal trialkynes with triazides to the synthesis of cage-like triazole compounds was determined. A number of starting materials were prepared and several monotriazoles as well as macrocyclic bistriazoles were obtained from the triazide trialkyne reaction. Finally, a tristriazole macrobicyclic compound was synthesized from the previously formed triazole precursors.

    References

  • 1 For part 21, see: Fotsing JR. Banert K. Eur. J. Org. Chem.  2006,  3617 
  • 2 Michael A. J. Prakt. Chem.  1893,  48:  94 
  • 3a Huisgen R. Naturwiss. Rundschau  1961,  14:  15 
  • 3b Huisgen R. Proc. Chem. Soc.  1961,  357 
  • 3c Huisgen R. In 1,3-Dipolar Cycloaddition Chemistry   Vol. 1:  Padwa A. Wiley; Chichester: 1984.  p.1 
  • 4 Kirmse W. Horner L. Liebigs Ann. Chem.  1958,  614:  1 
  • 5 Independently of Sharpless and co-workers, Tornøe, Christensen, and Meldal introduced the copper(I)-catalyzed regioselective 1,3-dipolar cycloaddition of terminal alkynes at azides in the solid-phase synthesis at nearly the same time: Tornøe CW. Christensen C. Meldal M. J. Org. Chem.  2002,  67:  3057 
  • 6 Rostovtsev VV. Green LG. Fokin VV. Sharpless KB. Angew. Chem. Int. Ed.  2002,  41:  2596 ; Angew. Chem. 2002, 114, 2708
  • 7 For kinetic investigations on the reaction mechanism, see: Rodionov VO. Fokin VV. Finn MG. Angew. Chem. Int. Ed.  2005,  44:  2210 ; Angew. Chem. 2005, 117, 2250
  • 8 Appukkuttan P. Dehaen W. Fokin VV. van der Eycken E. Org. Lett.  2004,  6:  4223 
  • 9 The copper(I) catalysis works well in a broad pH range, tolerates a large number of several functional groups, and is insensitive against water and oxygen. The reaction is regioselective and leads to products, which can be easily isolated: Durán Pachón L. van Maarseveen JH. Rothenberg G. Adv. Synth. Catal.  2005,  347:  811 
  • 10 Kolb HC. Finn MG. Sharpless KB. Angew. Chem. Int. Ed.  2001,  40:  2004 ; Angew. Chem. 2001, 113, 2056
  • 11 Himo F. Lovell T. Hilgraf R. Rostovtsev VV. Noodleman L. Sharpless KB. Fokin VV. J. Am. Chem. Soc.  2005,  127:  210 
  • 12 Bock VD. Hiemstra H. van Maarseveen JH. Eur. J. Org. Chem.  2006,  51 
  • 13 Nolte C. Mayer P. Straub BF. Angew. Chem. Int. Ed.  2007,  46:  2101 ; Angew. Chem. 2007, 119, 2147
  • 14a Gommermann N. Gehrig A. Knochel P. Synlett  2005,  2796 
  • 14b Lewis WG. Magallon FG. Fokin VV. Finn MG. J. Am. Chem. Soc.  2004,  126:  9152 
  • 14c Wu Y.-M. Deng J. Li Y. Chen Q.-Y. Synthesis  2005,  1314 
  • 14d Yang D. Fu N. Liu Z. Li Y. Chen B. Synlett  2007,  278 
  • 15a Buckle DR. Rockell CJM. J. Chem. Soc., Perkin Trans. 1  1982,  627 
  • 15b Buckle DR. Outred DJ. Rockell CJM. Smith H. Spicer BA. J. Med. Chem.  1983,  26:  251 
  • 15c Buckle DR. Rockell CJM. Smith H. Spicer BA. J. Med. Chem.  1986,  29:  2262 
  • 15d Genin MJ. Allwine DA. Anderson DJ. Barbachyn MR. Emmert DE. Garmon SA. Graber DR. Grega KC. Hester JB. Hutchinson DK. Morris J. Reischer RJ. Ford CW. Zurenko GE. Hamel JC. Schaadt RD. Stapert D. Yagi BH. J. Med. Chem.  2000,  43:  953 
  • 15e Alvarez R. Velázquez S. San-Félix A. Aquaro S. De Clercq E. Perno C.-F. Karlsson A. Balzarini J. Camarasa MJ. J. Med. Chem.  1994,  37:  4185 
  • 15f Wamhoff H. In Comprehensive Heterocyclic Chemistry   Vol. 5:  Katritzky AR. Rees CW. Pergamon; Oxford: 1984.  p.669 
  • 15g Krasiński A. Fokin VV. Sharpless KB. Org. Lett.  2004,  6:  1237 
  • 16a Tsarevsky NV. Sumerlin BS. Matyjaszewski K. Macromolecules  2005,  38:  3558 
  • 16b Opsteen JA. van Hest JCM. Chem. Commun.  2005,  57 
  • 16c van Steenis DJVC. David ORP. van Strijdonck GPF. van Maarseveen JH. Reek JNH. Chem. Commun.  2005,  4333 
  • 17a Wang Q. Chan TR. Hilgraf R. Fokin VV. Sharpless KB. Finn MG. J. Am. Chem. Soc.  2003,  125:  3192 
  • 17b Lewis WG. Green LG. Grynszpan F. Radić Z. Carlier PR. Taylor P. Finn MG. Sharpless KB. Angew. Chem. Int. Ed.  2002,  41:  1053 ; Angew. Chem. 2002, 114, 1095
  • 17c Mocharla VP. Colasson B. Lee LV. Röper S. Sharpless KB. Wong C.-H. Kolb HC. Angew. Chem. Int. Ed.  2005,  44:  116 ; Angew. Chem. 2005, 117, 118
  • 18a Díaz DD. Punna S. Holzer P. McPherson AK. Sharpless KB. Fokin VV. Finn MG. J. Polym. Sci., Part A: Polym. Chem.  2004,  42:  4392 
  • 18b Lutz J.-F. Angew. Chem. Int. Ed.  2007,  46:  1018 ; Angew. Chem. 2007, 119, 1036
  • 19a Lee JW. Kim B.-K. Synthesis  2006,  615 
  • 19b Wu P. Feldman AK. Nugent AK. Hawker CJ. Scheel A. Voit B. Pyun J. Fréchet JMJ. Sharpless KB. Fokin VV. Angew. Chem. Int. Ed.  2004,  43:  3928 ; Angew. Chem. 2004, 116, 4018
  • 19c Dave PR. Duddu R. Yang K. Damavarapu R. Gelber N. Surapaneni R. Gilardi R. Tetrahedron Lett.  2004,  45:  2159 
  • 19d Joralemon MJ. O’Reilly RK. Matson JB. Nugent AK. Hawker CJ. Wooley KL. Macromolecules  2005,  38:  5436 
  • 20a Aucagne V. Hänni KD. Leigh DA. Lusby PJ. Walker DB. J. Am. Chem. Soc.  2006,  128:  2186 
  • 20b Aucagne V. Berná J. Crowley JD. Goldup SM. Hänni KD. Leigh DA. Lusby PJ. Ronaldson VE. Slawin AMZ. Viterisi A. Walker DB. J. Am. Chem. Soc.  2007,  129:  11950 
  • 20c Aprahamian I. Dichtel WR. Ikeda T. Heath JR. Stoddart JF. Org. Lett.  2007,  9:  1287 
  • 20d Mobian P. Collin J.-P. Sauvage J.-P. Tetrahedron Lett.  2006,  47:  4907 
  • 21 Chan TR. Hilgraf R. Sharpless KB. Fokin VV. Org. Lett.  2004,  6:  2853 
  • 22 Banert K. Hagedorn M. Liedtke C. Melzer A. Schöffler C. Eur. J. Org. Chem.  2000,  257 
  • 23a Bodine KD. Gin DY. Gin MS. J. Am. Chem. Soc.  2004,  126:  1638 
  • 23b Looper RE. Pizzirani D. Schreiber SL. Org. Lett.  2006,  8:  2063 
  • 23c Angell Y. Burgess K. J. Org. Chem.  2005,  70:  9595 
  • 24 Krasia TC. Steinke JHG. Chem. Commun.  2002,  22 
  • 25 Energy-rich organic azides with low molecular weight, especially those with more than one azido group are potentially explosive and must be handled with care! Bräse S. Gil C. Knepper K. Zimmermann V. Angew. Chem. Int. Ed.  2005,  44:  5188 ; Angew. Chem. 2005, 117, 5320
  • The azide 1 was not prepared analogously to the literature given below in order to avoid the isolation of the N-lost compound:
  • 26a Witucki EF. Wilson ER. Flanagan JE. Frankel MB. J. Chem. Eng. Data  1983,  28:  285 
  • 26b Mason JP. Gasch DJ. J. Am. Chem. Soc.  1938,  60:  2816 
  • 27 Glaser C. Ber. Dtsch. Chem. Ges.  1869,  2:  422 
  • 28a Korostova SE. Mishaleva AI. Shevchenko SG. Sobenina LN. Fel’dman VD. Shishov NI. Zh. Prikl. Khim.  1990,  63:  234 ; Chem. Abstr.  1990,  113:  23050g 
  • 28b Mollard A. Zharov I. Inorg. Chem.  2006,  45:  10172 
  • 30 Ryu E.-H. Zhao Y. Org. Lett.  2005,  7:  1035 
  • 31a Powell WH. Pure Appl. Chem.  1998,  70:  1513 
  • 31b Favre HA. Hellwinkel D. Powell WH. Smith H.-A. Tsay SS.-C. Pure Appl. Chem.  2002,  74:  809 
29

Crystal data: C20H30N10O3, MW = 458.54, T = 100 K, λ = 0.71073 Å, triclinic, space group P1, a = 9.2764(11) Å, b = 10.7672(12) Å, c = 12.7431(10) Å, α = 75.015(8)˚, β = 81.255(8)˚, γ = 67.002(11)˚, V = 1129.9(2) Å3, Z = 2, D = 1.348 Mg/m3, µ = 0.096 mm, F(000) = 488. Crystallographic data for the structure reported in this paper have been deposited at the Cambridge Crystallographic Data Centre under the number CCDC 673760. Copies of the data may be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44 1223 33603 or e-mail: deposit@ccdc.cam.ac.uk).