Synthesis 2008(18): 2943-2952  
DOI: 10.1055/s-2008-1067248
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Recyclization of (2-Aminophenyl)bis(5-tert-butyl-2-furyl)methanes into Indole Derivatives: Unusual Dependence on Substituent at Nitrogen Atom

Alexander V. Butin*a, Sergey K. Smirnova, Fatima A. Tsiunchika, Maxim G. Uchuskina, Igor V. Trushkovb
a Research Institute of Heterocyclic Compounds Chemistry, Kuban State University of Technology, Moskovskaya st. 2, Krasnodar 350072, Russian Federation
Fax: +7(861)2596592; e-Mail: alexander_butin@mail.ru; av_butin@yahoo.com;
b Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation
Further Information

Publication History

Received 20 May 2008
Publication Date:
04 September 2008 (online)

Abstract

The recyclization of (2-aminophenyl)bis(5-tert-butyl-2-furyl)methanes under acidic conditions was studied. It was found that the extent of reaction of these substrates depends on the substituent at the nitrogen atom of the aniline moiety. N-Tosyl derivatives were converted into the corresponding 3-(5-tert-butyl-2-furyl)-2-(4,4-dimethyl-3-oxopentyl)-1-tosyl-1H-indoles. Indole formation was followed by furan ring opening in the case of N-unsubstituted substrates leading to 3-(5,5-dimethyl-1,4-dioxohexyl)-2-(4,4-dimethyl-3-oxopentyl)-1H-indoles. The same products were obtained from N-acetyl derivatives. However, the behavior of the N-benzoyl analogues depends on the reaction conditions: at room temperature 1-benzoyl-3-(5-tert-butyl-2-furyl)-1H-indoles were formed, but debenzoylation and furan ring opening proceed with heating. These data and results of control experiments showed that the reaction mechanism consists of three successive steps: recyclization itself, deacylation of the resulting N-acylindole, and furan ring opening in N-unsubstituted 3-(2-furyl)indoles. The last step can be realized for N-unsubstituted indoles only, but the furan ring is stable for N-acylindoles. This was explained by transformation of N-unsubstituted 1H-indoles under the reaction conditions into 3H-indole tautomers. These tautomers can be considered as 2,5-dialkylfurans, which have much lower stability against acids than 2-aryl-5-alkylfurans. This tautomerization is impossible for N-acylindoles. The high acidic stability of 2-(5-tert-butyl-2-furyl)indoles supports this conclusion.

    References

  • 1a Gabrielyan GE. Papayan GL. Arm. Khim. Zh.  1973,  26:  768 , Chem. Abstr. 1974, 80, 70638
  • 1b Holla BS. Ambekar SY. J. Chem. Soc., Chem. Commun.  1979,  221 
  • 1c Holla BS. Ambekar SY. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  1982,  21:  638 
  • 1d Campbell MM. Cosford N. Li Z. Sainsbury M. Tetrahedron  1987,  43:  1117 
  • 1e Couture A. Deniau E. Gimbert Y. Grandclaudon P. J. Chem. Soc., Perkin Trans. 1  1993,  2463 
  • 1f Katritzky AR. Wang J. Karodia N. Li J. Synth. Commun.  1997,  27:  3963 
  • 1g Butin AV. Stroganova TA. Abaev VT. Zavodnik VE. Chem. Heterocycl. Compd. (Engl. Transl.)  1997,  33:  1393 ; Khim. Geterotsikl. Soedin. 1997, 1614
  • 1h Nishida A. Miyashita N. Fuwa M. Nakagawa M. Heterocycles  2003,  59:  473 
  • 1i Miyagi T. Hari Y. Aoyama T. Tetrahedron Lett.  2004,  45:  6303 
  • 2a Bottcher H, Marz J, Greiner H, Harting J, Bartoszyk G, Seyfried C, and Van Amsterdam C. inventors; WO  2,001,007,434.  ; Chem. Abstr. 2001, 134, 131549
  • 2b Stolle A, Dumas JP, Carley W, Coish PDG, Magnuson SR, Wang Y, Nagarathnam D, Lowe DB, Su N, Bullock WH, Campbell A.-M, Qi N, Baryza JL, and Cook JH. inventors; WO  2,002,030,895.  ; Chem. Abstr. 2002, 136, 309846
  • 2c Townsend LB, and Drach JC. inventors; WO  2,005,034,943.  ; Chem. Abstr. 2005, 142, 411589
  • 2d Allen JR, Amegadzie AK, Gardinier KM, Gregory GS, Hitchcock SA, Hoogestraat PJ, Jones WD, and Smith DL. inventors; WO  2,005,066,126.  ; Chem. Abstr. 2005, 143, 133274
  • 2e Williams JD. Ptak RG. Drach JC. Townsend LB. J. Med. Chem.  2004,  47:  5773 
  • 3 Butin AV. Smirnov SK. Trushkov IV. Tetrahedron Lett.  2008,  49:  20 
  • 4 Butin AV. Gutnov AV. Abaev VT. Krapivin GD. Molecules  1999,  4:  52 
  • 5a Butin AV. Smirnov SK. Stroganova TA. J. Heterocycl. Chem.  2006,  43:  623 
  • 5b Butin AV. Smirnov SK. Stroganova TA. Bender W. Krapivin GD. Tetrahedron  2007,  63:  474 
  • 6a Dmitriev AS. Abaev VT. Bender W. Butin AV. Tetrahedron  2007,  63:  9437 
  • 6b Butin AV. Dmitriev AS. Kostyukova ON. Abaev VT. Trushkov IV. Synthesis  2007,  2208 
  • 7a Abaev VT. Dmitriev AS. Gutnov AV. Podelyakin SA. Butin AV. J. Heterocycl. Chem.  2006,  43:  1195 
  • 7b Butin AV. Dmitriev AS. Uchuskin MG. Abaev VT. Trushkov IV. Synth. Commun.  2008,  38:  1569 
  • 8a Butin AV. Abaev VT. Mel’chin VV. Dmitriev AS. Tetrahedron Lett.  2005,  46:  8439 
  • 8b Butin AV. Abaev VT. Mel’chin VV. Dmitriev AS. Pilipenko AS. Shashkov AS. Synthesis  2008,  1798 
  • 9 Fitzpatrick JE. Milner DJ. White P. Synth. Commun.  1982,  12:  489 
  • 10 Tsiunchik FA. Abaev VT. Butin AV. Chem. Heterocycl. Compd. (Engl. Transl.)  2005,  45:  1476 ; Khim. Geterotsikl. Soedin. 2005, 1796