Abstract
An overview of studies on hydrogenative reductive aldol addition
is presented. By simply hydrogenating enones in the presence of
aldehydes at ambient temperature and pressure, aldol adducts are
generated under neutral conditions in the absence of any stoichiometric
byproducts. Using cationic rhodium complexes modified by tri(2-furyl)phosphine,
highly syn -diastereoselective reductive
aldol additions of vinyl ketones are achieved. Finally, using novel
monodentate TADDOL-like phosphonite ligands, the first highly diastereo-
and enantioselective reductive aldol couplings of vinyl ketones
were devised. These studies, along with other works from our laboratory,
demonstrate that organometallics arising transiently in the course
of catalytic hydrogenation offer byproduct-free alternatives to
preformed organometallic reagents employed in classical carbonyl
addition processes.
1 Introduction
2 Intramolecular Hydrogenative Aldol Addition
3 Intermolecular Hydrogenative Aldol Addition
4 Conclusion and Outlook
Key words
hydrogenation - rhodium - green chemistry - aldol - enantioselective catalysis
References
Though largely attributed to Wurtz,
the aldol reaction was reported first by Borodin:
<A NAME="RE21208SS-1A">1a </A>
von Richter V.
Ber.
Dtsch. Chem. Ges.
1869,
2:
552 ;
(Borodin’s earliest results are cited in this article)
<A NAME="RE21208SS-1B">1b </A>
Wurtz A.
Bull.
Soc. Chim. Fr.
1872,
17:
436
<A NAME="RE21208SS-1C">1c </A>
Borodin A.
Ber.
Dtsch. Chem. Ges.
1873,
6:
982
<A NAME="RE21208SS-1D">1d </A> See also:
Kane R.
Ann. Phys. Chem., Ser. 2
1838,
44:
475
For selected reviews on stereoselective
aldol additions, see:
<A NAME="RE21208SS-2A">2a </A>
Heathcock CH.
Science
1981,
214:
395
Heathcock CH. In Asymmetric
Reactions and Processes in Chemistry, ACS
Symposium Series
Vol. 185:
Eliel EL.
Otsuka S.
American
Chemical Society;
Washington DC:
1982.
p.55
<A NAME="RE21208SS-2C">2c </A>
Evans DA.
Nelson JV.
Taber TR.
Top. Stereochem.
1982,
13:
1
<A NAME="RE21208SS-2D">2d </A>
Machajewski TD.
Wong C.-H.
Angew. Chem.
Int. Ed.
2000,
39:
1352
<A NAME="RE21208SS-2E">2e </A>
Palomo C.
Oiarbide M.
García JM.
Chem. Soc. Rev.
2004,
33:
65
For reviews, see:
<A NAME="RE21208SS-3A">3a </A>
Trost BM.
Science
1991,
254:
1471
<A NAME="RE21208SS-3B">3b </A>
Trost BM.
Angew. Chem., Int. Ed. Engl.
1995,
34:
259
<A NAME="RE21208SS-4A">4a </A>
Wender PA.
Miller BL.
Org. Synth. Theor. Appl.
1993,
2:
27
<A NAME="RE21208SS-4B">4b </A>
Wender PA.
Handy S.
Wright DL.
Chem. Ind.
1997,
767
<A NAME="RE21208SS-5">5 </A>For recent reviews on the use of
organic catalysts for direct enantioselective aldol addition, see:
<A NAME="RE21208SS-5">5 </A>
Shibasaki M.
Matsunaga S.
Kumagai N. In Modern Aldol Reactions
Vol.
2:
Mahrwald R.
Wiley-VCH;
Weinheim:
2004.
p.197
For a recent review on the use of
metallic catalysts for direct enantioselective aldol additions,
see:
<A NAME="RE21208SS-6A">6a </A>
List B. In Modern Aldol Reactions
Vol.
1:
Mahrwald R.
Wiley-VCH;
Weinheim:
2004.
p.161
<A NAME="RE21208SS-6B">6b </A>
Notz W.
Tanaka F.
Barbas CF.
Acc. Chem. Res.
2004,
37:
580
<A NAME="RE21208SS-7A">7a </A>
Notz W.
List B.
J.
Am. Chem. Soc.
2000,
122:
7386
<A NAME="RE21208SS-7B">7b </A>
Yoshikawa N.
Kumagai N.
Matsunaga S.
Moll G.
Ohshima T.
Suzuki T.
Shibasaki M.
J. Am.
Chem. Soc.
2001,
123:
2466
<A NAME="RE21208SS-7C">7c </A>
Trost BM.
Ito H.
Silcoff ER.
J. Am. Chem. Soc.
2001,
123:
3367
<A NAME="RE21208SS-8">8 </A>
Sakthivel K.
Notz W.
Bui T.
Barbas CF.
J. Am. Chem. Soc.
2001,
123:
5260
<A NAME="RE21208SS-9A">9a </A> Using
amides of l -proline, direct catalyzed aldol coupling
of 2-butanone to p -nitrobenzaldehyde
affords mixtures of regioisomeric products:
Tang Z.
Yang Z.-H.
Chen X.-H.
Cun L.-F.
Mi A.-Q.
Jiang Y.-Z.
Gong
L.-Z.
J.
Am. Chem. Soc.
2005,
127:
9285
<A NAME="RE21208SS-9B">9b </A> Higher levels of branched
regioselectivity are obtained using organo-catalysts derived from
diaminocyclohexane:
Luo S.
Lu H.
Li J.
Zhang L.
Cheng J.-P.
J. Am. Chem. Soc.
2007,
129:
3074
<A NAME="RE21208SS-10">10 </A>
Yoshikawa N.
Yamada YMA.
Das J.
Sasai H.
Shibasaki M.
J.
Am. Chem. Soc.
1999,
121:
4168
<A NAME="RE21208SS-11A">11a </A>
House HO.
Czuba LJ.
Gall M.
Olmstead HD.
J. Org.
Chem.
1969,
34:
2324
<A NAME="RE21208SS-11B">11b </A>
Kraft ME.
Holton RA.
Tetrahedron
Lett.
1983,
24:
1345
<A NAME="RE21208SS-12">12 </A> For a review, see:
Velluz L.
Valls J.
Nomine G.
Angew. Chem.
Int. Ed.
1965,
4:
181
<A NAME="RE21208SS-13A">13a </A>
Corey EJ.
Sneen RA.
J.
Am. Chem. Soc.
1955,
77:
2505
<A NAME="RE21208SS-13B">13b </A>
Berkoz B.
Chavez EP.
Djerassi C.
J.
Chem. Soc.
1962,
1323
<A NAME="RE21208SS-13C">13c </A>
Mazur Y.
Sondheimer F.
J. Am. Chem. Soc.
1958,
80:
6296
<A NAME="RE21208SS-14A">14a </A>
Stork G.
Rosen P.
Goldman NL.
J. Am. Chem. Soc.
1961,
83:
2965
<A NAME="RE21208SS-14B">14b </A>
Stork G.
Rosen P.
Goldman N.
Coombs RV.
Tsuji J.
J.
Am. Chem. Soc.
1965,
87:
275
For recent reviews on the reductive
aldol reaction, see:
Huddleston RR.
Krische MJ.
Synlett
2003,
12
<A NAME="RE21208SS-15B">15b </A>
Nishiyama H.
Shiomi T.
Top. Curr. Chem.
2007,
279:
105
<A NAME="RE21208SS-15C">15c </A>
Garner S.
Han SB.
Krische MJ. In Modern Reductions
Andersson P.
Munslow I.
Wiley-VCH;
Weinheim:
2008.
p.387-408
For rhodium-catalyzed reductive
aldol reactions mediated by silane, see:
<A NAME="RE21208SS-16A">16a </A>
Revis A.
Hilty TK.
Tetrahedron Lett.
1987,
28:
4809
Matsuda I.
Takahashi K.
Sato S.
Tetrahedron
Lett.
1990,
31:
5331
<A NAME="RE21208SS-16C">16c </A>
Taylor SJ.
Morken JP.
J.
Am. Chem. Soc.
1999,
121:
12202
<A NAME="RE21208SS-16D">16d </A>
Taylor SJ.
Duffey MO.
Morken JP.
J. Am. Chem. Soc.
2000,
122:
4528
<A NAME="RE21208SS-16E">16e </A>
Zhao C.-X.
Bass J.
Morken JP.
Org.
Lett.
2001,
3:
2839
<A NAME="RE21208SS-16F">16f </A>
Emiabata-Smith D.
McKillop A.
Mills C.
Motherwell WB.
Whitehead AJ.
Synlett
2001,
1302
<A NAME="RE21208SS-16G">16g </A>
Freiría M.
Whitehead AJ.
Tocher DA.
Motherwell WB.
Tetrahedron
2004,
60:
2673
<A NAME="RE21208SS-16H">16h </A>
Nishiyama H.
Shiomi T.
Tsuchiya Y.
Matsuda I.
J. Am. Chem. Soc.
2005,
127:
6972
<A NAME="RE21208SS-16I">16i </A>
Willis MC.
Woodward RL.
J.
Am. Chem. Soc.
2005,
127:
18012
<A NAME="RE21208SS-16J">16j </A>
Fuller NO.
Morken JP.
Synlett
2005,
1459
<A NAME="RE21208SS-16K">16k </A>
Ito JI.
Shiomi T.
Nishiyama H.
Adv. Synth. Catal.
2006,
348:
1235
<A NAME="RE21208SS-16L">16l </A>
Shiomi T.
Ito J.-I.
Yamamoto Y.
Nishiyama H.
Eur. J. Org. Chem.
2006,
5594
<A NAME="RE21208SS-16M">16m </A>
Shiomi T.
Nishiyama H.
Org. Lett.
2007,
9:
1651
For rhodium-catalyzed reductive
aldol reactions mediated by hydrogen, see:
<A NAME="RE21208SS-17A">17a </A>
Jang HY.
Huddleston RR.
Krische MJ.
J. Am. Chem. Soc.
2002,
124:
15156
<A NAME="RE21208SS-17B">17b </A>
Huddleston RR.
Krische MJ.
Org.
Lett.
2003,
5:
1143
<A NAME="RE21208SS-17C">17c </A>
Koech PK.
Krische MJ.
Org.
Lett.
2004,
6:
691
<A NAME="RE21208SS-17D">17d </A>
Marriner GA.
Garner SA.
Jang HY.
Krische MJ.
J.
Org. Chem.
2004,
69:
1380
<A NAME="RE21208SS-17E">17e </A>
Jung CK.
Garner SA.
Krische MJ.
Org. Lett.
2006,
8:
519
<A NAME="RE21208SS-17F">17f </A>
Han SB.
Krische MJ.
Org.
Lett.
2006,
8:
5657
<A NAME="RE21208SS-17G">17g </A>
Jung CK.
Krische MJ.
J.
Am. Chem. Soc.
2006,
128:
17051
<A NAME="RE21208SS-17H">17h </A>
Bee C.
Han SB.
Hassan A.
Iida H.
Krische MJ.
J.
Am. Chem. Soc.
2008,
130:
2747
For cobalt-catalyzed reductive
aldol reactions, see:
<A NAME="RE21208SS-18A">18a </A>
Isayama S.
Mukaiyama T.
Chem. Lett.
1989,
2005
Baik TG.
Luis AL.
Wang LC.
Krische MJ.
J. Am. Chem.
Soc.
2001,
123:
5112
<A NAME="RE21208SS-18C">18c </A>
Wang LC.
Jang H.-Y.
Roh Y.
Lynch V.
Schultz AJ.
Wang X.
Krische MJ.
J.
Am. Chem. Soc.
2002,
124:
9448
<A NAME="RE21208SS-18D">18d </A>
Lam HW.
Joensuu PM.
Murray GJ.
Fordyce EAF.
Prieto O.
Luebbers T.
Org.
Lett.
2006,
8:
3729
<A NAME="RE21208SS-18E">18e </A>
Lumby RJR.
Joensuu PM.
Lam HW.
Org. Lett.
2007,
9:
4367
<A NAME="RE21208SS-19">19 </A> For iridium-catalyzed reductive
aldol reaction, see:
Zhao CX.
Duffey MO.
Taylor SJ.
Morken JP.
Org. Lett.
2001,
3:
1829
<A NAME="RE21208SS-20">20 </A> For ruthenium-catalyzed reductive
aldol reaction, see:
Doi T.
Fukuyama T.
Minamino S.
Ryu I.
Synlett
2006,
3013
<A NAME="RE21208SS-21">21 </A> For palladium-catalyzed reductive
aldol reaction, see:
Kiyooka SI.
Shimizu A.
Torii S.
Tetrahedron
Lett.
1998,
39:
5237
For copper-promoted reductive aldol
reaction, see:
<A NAME="RE21208SS-22A">22a </A>
Chiu P.
Chen B.
Cheng KF.
Tetrahedron
Lett.
1998,
39:
9229
Chiu P.
Synthesis
2004,
2210
For copper-promoted reductive intramolecular Henry reaction,
see:
<A NAME="RE21208SS-22C">22c </A>
Chung WK.
Chiu P.
Synlett
2005,
55
For copper-promoted and -catalyzed reductive cyclizations
of α,β-acetylenic ketones tethered to ketones,
see:
<A NAME="RE21208SS-22D">22d </A>
Chiu P.
Leung SK.
Chem. Commun.
2004,
2308
For copper-catalyzed reductive
aldol reaction, see:
<A NAME="RE21208SS-23A">23a </A>
Ooi T.
Doda K.
Sakai D.
Maruoka K.
Tetrahedron Lett.
1999,
40:
2133
<A NAME="RE21208SS-23B">23b </A>
Lam HW.
Joensuu PMA.
Org.
Lett.
2005,
7:
4225
<A NAME="RE21208SS-23C">23c </A>
Lam HW.
Murray GJ.
Firth JD.
Org. Lett.
2005,
7:
5743
<A NAME="RE21208SS-23D">23d </A>
Deschamp J.
Chuzel O.
Hannedouche J.
Riant O.
Angew. Chem. Int. Ed.
2006,
45:
1292
<A NAME="RE21208SS-23E">23e </A>
Chuzel O.
Deschamp J.
Chauster C.
Riant O.
Org. Lett.
2006,
8:
5943
<A NAME="RE21208SS-23F">23f </A>
Zhao D.
Oisaki K.
Kanai M.
Shibasaki M.
Tetrahedron Lett.
2006,
47:
1403
<A NAME="RE21208SS-23G">23g </A>
Zhao D.
Oisaki K.
Kanai M.
Shibasaki M.
J. Am. Chem. Soc.
2006,
128:
14440
<A NAME="RE21208SS-23H">23h </A>
Welle A.
Diez-Gonzalez S.
Tinant B.
Nolan SP.
Riant O.
Org.
Lett.
2006,
8:
6059
For nickel-catalyzed reductive
aldol reaction, see:
<A NAME="RE21208SS-24A">24a </A>
Chrovian CC.
Montgomery J.
Org.
Lett.
2007,
9:
537
<A NAME="RE21208SS-24B">24b </A>
Joensuu PM.
Murray G. J.
Fardyce EA. F.
Luebbers T.
Lam HW.
J. Am. Chem. Soc.
2008,
130:
7328
<A NAME="RE21208SS-25">25 </A> For a reductive aldol coupling employing
stoichiometric quantities of indium reagent, see:
Inoue K.
Ishida T.
Shibata I.
Baba A.
Adv. Synth.
Catal.
2002,
344:
283
For indium-catalyzed reductive
aldol reaction, see:
<A NAME="RE21208SS-26A">26a </A>
Shibata I.
Kato H.
Ishida T.
Yasuda M.
Baba A.
Angew. Chem.
Int. Ed.
2004,
43:
711
<A NAME="RE21208SS-26B">26b </A>
Miura K.
Yamada Y.
Tomita M.
Hosomi A.
Synlett
2004,
1985
<A NAME="RE21208SS-27">27 </A>
Roelen O. inventors; German Patent DE 849548.
(Chemische
Verwertungsgesellschaft mbH, Oberhausen)
; Chem. Abstr. 1944 , 38 , 5501
<A NAME="RE21208SS-28A">28a </A>
Fischer F.
Tropsch H.
Brennst.-Chem.
1923,
4:
276
Fischer F.
Tropsch H.
Chem. Ber.
1923,
56:
2428
<A NAME="RE21208SS-29A">29a </A>
Molander GA.
Hoberg JO.
J. Am. Chem. Soc.
1992,
114:
3123
<A NAME="RE21208SS-29B">29b </A>
Kokube K.
Miura M.
Nomura M.
Organometallics
1995,
14:
4521
Side products of reductive carbon-carbon
bond formation have been observed in catalytic hydrogenation on
rare occasion:
Moyes RB.
Walker DW.
Wells PB.
Whan DA.
Irvine EA. In
Catalysis
and Surface Characterization (Special Publication)
Vol.
114:
Dines TJ.
Rochester CH.
Thomson J.
Royal Society of Chemistry;
London:
1992.
p.207
<A NAME="RE21208SS-30B">30b </A>
Bianchini C.
Meli A.
Peruzzini M.
Vizzi F.
Zanobini F.
Frediani P.
Organometallics
1989,
8:
2080
For recent reviews on hydrogen-mediated
C-C coupling, see:
<A NAME="RE21208SS-31A">31a </A>
Ngai M.-Y.
Krische MJ.
Chim. Oggi/Chemistry Today
2006,
24(4):
12 ; (chiral technologies supplement)
Iida H.
Krische MJ.
Top. Curr. Chem.
2007,
279:
77
<A NAME="RE21208SS-31C">31c </A>
Ngai M.-Y.
Kong J.-R.
Krische MJ.
J.
Org. Chem.
2007,
72:
1063
<A NAME="RE21208SS-31D">31d </A>
Skucas E.
Ngai M.-Y.
Komanduri V.
Krische MJ.
Acc. Chem. Res.
2007,
40:
1394
<A NAME="RE21208SS-32">32 </A>
Zimmerman HE.
Traxler MD.
J. Am. Chem. Soc.
1957,
79:
1920
Monohydride catalytic cycles initiated
via deprotonation of cationic rhodium dihydrides have been postulated:
<A NAME="RE21208SS-33A">33a </A>
Schrock RR.
Osborn JA.
J.
Am. Chem. Soc.
1976,
98:
2134
<A NAME="RE21208SS-33B">33b </A>
Schrock RR.
Osborn JA.
J.
Am. Chem. Soc.
1976,
98:
2143
<A NAME="RE21208SS-33C">33c </A>
Schrock RR.
Osborn JA.
J.
Am. Chem. Soc.
1976,
98:
4450
For reviews on the heterolytic
activation of elemental hydrogen, see:
<A NAME="RE21208SS-34A">34a </A>
Brothers PJ.
Prog. Inorg. Chem.
1981,
28:
1
See also:
<A NAME="RE21208SS-34B">34b </A> Jeske G., Lauke H.,
Mauermann H., Schumann H., Marks T. J.; J. Am. Chem. Soc.; 1985 , 107 : 8111
<A NAME="RE21208SS-35">35 </A> For a review of the acidity of
metal hydrides, see:
Kristjansdottir SS.
Norton JR. In
Transition
Metal Hydrides
Dedieu A.
VCH;
Weinheim:
1992.
p.309
<A NAME="RE21208SS-36">36 </A>
Yachi K.
Shinokubo H.
Oshima K.
J.
Am. Chem. Soc.
1999,
121:
9465
<A NAME="RE21208SS-37">37 </A>
Arnett EM.
Fisher FJ.
Nichols MA.
Ribeiro AA.
J. Am.
Chem. Soc.
1989,
111:
748
The failure of tris(dialkylamino)sulfonium
enolates to react with aldehydes is attributed to unfavorable enolate-aldolate equilibria:
<A NAME="RE21208SS-38A">38a </A>
Noyori R.
Sakata J.
Nishizawa M.
J.
Am. Chem. Soc.
1980,
102:
1223
<A NAME="RE21208SS-38B">38b </A>
Noyori R.
Nishida I.
Sakata J.
J.
Am. Chem. Soc.
1981,
103:
2106
<A NAME="RE21208SS-38C">38c </A>
Noyori R.
Nishida I.
Sakata J.
J.
Am. Chem. Soc.
1983,
105:
1598
For tri(2-furyl)phosphine and triphenylarsine
effects in metal-catalyzed reactions, see:
<A NAME="RE21208SS-39A">39a </A>
Farina V.
Krishnan B.
J. Am. Chem. Soc.
1991,
113:
9585
<A NAME="RE21208SS-39B">39b </A>
Farina V.
Pure Appl.
Chem.
1996,
68:
73
<A NAME="RE21208SS-39C">39c </A>
Anderson NG.
Keay BA.
Chem.
Rev.
2001,
101:
997
<A NAME="RE21208SS-40">40 </A>
Consistent with internal hydride delivery
to the enone s -cis conformer through
a six-centered transition structure, enones constrained in the s -trans configuration,
such as cyclohexenone, do not participate in hydrogenative reductive
aldol coupling.
For TADDOL-derived phosphonites,
see:
<A NAME="RE21208SS-41A">41a </A>
Seebach D.
Hayakawa M.
Sakaki J.-I.
Schweizer WB.
Tetrahedron
1993,
49:
1711
<A NAME="RE21208SS-41B">41b </A>
Sakaki J.-I.
Schweizer WB.
Seebach D.
Helv.
Chim. Acta
1993,
76:
2654
<A NAME="RE21208SS-41C">41c </A>
Haag D.
Runsink J.
Scharf H.-D.
Organometallics
1998,
17:
398
For recent examples of hydrogenative
C-C couplings developed in our laboratory, see:
<A NAME="RE21208SS-42A">42a </A>
Kong J.-R.
Ngai
M.-Y.
Krische MJ.
J. Am. Chem. Soc.
2006,
128:
718
<A NAME="RE21208SS-42B">42b </A>
Skucas E.
Kong J.-R.
Krische MJ.
J.
Am. Chem. Soc.
2007,
129:
7242
<A NAME="RE21208SS-42C">42c </A>
Barchuk A.
Ngai M.-Y.
Krische MJ.
J.
Am. Chem. Soc.
2007,
129:
8432
<A NAME="RE21208SS-42D">42d </A>
Barchuk A.
Ngai M.-Y.
Krische MJ.
J.
Am. Chem. Soc.
2007,
129:
12644
<A NAME="RE21208SS-42E">42e </A>
Skucas E.
Bower JF.
Krische MJ.
J. Am. Chem. Soc.
2007,
129:
12678
For recent examples of transfer
hydrogenative C-C couplings developed in our laboratory,
see:
<A NAME="RE21208SS-43A">43a </A>
Bower JF.
Skucas E.
Patman RL.
Krische MJ.
J.
Am. Chem. Soc.
2007,
129:
15134
<A NAME="RE21208SS-43B">43b </A>
Bower JF.
Patman RL.
Krische MJ.
Org. Lett.
2008,
10:
1033
<A NAME="RE21208SS-43C">43c </A>
Shibahara F.
Bower JF.
Krische MJ.
J. Am. Chem. Soc.
2008,
130:
6338
<A NAME="RE21208SS-43D">43d </A>
Kim IS.
Ngai M.-Y.
Krische MJ.
J. Am. Chem. Soc.
2008,
130:
6340