Synthesis 2008(8): 1241-1248  
DOI: 10.1055/s-2008-1042943
PAPER
© Georg Thieme Verlag Stuttgart · New York

DTBB-Catalysed Lithiation of Acenaphthylene and Reaction with Carbonyl Compounds

Victor J. Lillo, Cecilia Gómez*, Miguel Yus*
Departamento de Química Orgánica, Facultad de Ciencias and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
Fax: +34(965)903549; e-Mail: cgomez@ua.es; e-Mail: yus@ua.es;
Further Information

Publication History

Received 27 December 2007
Publication Date:
18 March 2008 (online)

Abstract

The reaction of acenaphthylene with an excess of lithium powder and a catalytic amount of DTBB (7.5 mol%) in tetrahydrofuran at -70 °C followed by treatment with a carbonyl compound [Me2CO, Et2CO, i-Pr2CO, (c-C3H5)2CO, cyclopentanone, cyclohexanone, 2-adamantanone, Ph2CO, t-BuCHO] leads, after hydrolysis with water, to an easily chromatographically separable mixture of two products resulting from disubstitution at the 1,2-positions and monosubstitution at the 1-position, respectively. The reaction is regio- and stereoselective, so in the case of the disubstituted compounds only the trans-diastereomers are obtained.

    References

  • For reviews on arene-catalysed lithiation, see:
  • 1a Yus M. Chem. Soc. Rev.  1996,  25:  155 
  • 1b Ramón DJ. Yus M. Eur. J. Org. Chem.  2000,  225 
  • 1c Yus M. Synlett  2001,  1197 
  • 1d Yus M. In The Chemistry of Organolithium Compounds   Part 1, Vol. 1:  Rappoport Z. Marek I. Wiley & Sons; Chichester: 2004.  Chap. 11.
  • For a polymer-supported arene-catalysed version of this reaction, see:
  • 1e Gómez C. Ruiz S. Yus M. Tetrahedron Lett.  1998,  39:  1397 
  • 1f Gómez C. Ruiz S. Yus M. Tetrahedron  1999,  55:  7017 
  • 1g Yus M. Candela P. Gómez C. Tetrahedron  2002,  58:  6207 
  • 1h Alonso F. Candela P. Gómez C. Yus M. Adv. Synth. Catal.  2003,  345:  275 
  • 1i Candela P. Gómez C. Yus M. Russ. J. Org. Chem.  2004,  40:  795 
  • 2 For a review, see: Guijarro D. Yus M. Recent Res. Dev. Org. Chem.  1998,  2:  713 
  • For reviews, see:
  • 3a Yus M. Foubelo F. Rev. Heteroat. Chem.  1997,  17:  73 
  • 3b Yus M. Foubelo F. In Targets in Heterocyclic Systems   Attanasi OA. Spinelli D. Italian Society of Chemistry; Rome: 2002.  p.136-171  
  • 3c Yus M. Pure Appl. Chem.  2003,  75:  1453 
  • 3d Yus M. Foubelo F. Adv. Heterocycl. Chem.  2006,  91:  135 
  • For reviews, see:
  • 4a Nájera C. Yus M. Trends Org. Chem.  1991,  2:  155 
  • 4b Nájera C. Yus M. Org. Prep. Proced. Int.  1995,  27:  383 
  • 4c Nájera C. Yus M. Recent Res. Dev. Org. Chem.  1997,  1:  67 
  • 4d Nájera C. Yus M. Curr. Org. Chem.  2003,  7:  867 
  • 4e Nájera C. Sansano JM. Yus M. Tetrahedron  2003,  59:  9255 
  • 4f Chinchilla R. Nájera C. Yus M. Chem. Rev.  2004,  104:  2667 
  • 4g Chinchilla R. Nájera C. Yus M. Tetrahedron  2005,  61:  3139 
  • 4h See also the Tetrahedron Symposium-in-Print issue devoted to ‘Functionalised Organolithium Compounds’ (Nájera, C.; Yus, M., Eds.): Tetrahedron  2005,  61:  3125-3450  
  • 4i Yus M. Foubelo F. In Functionalized Organometallics   Vol. 1:  Knochel P. Wiley-VCH; Weinheim: 2005.  Chap. 2.
  • 4j Nájera C. Yus M. In The Chemistry of Organolithium Compounds   Vol. 2:  Rappoport Z. Marek I. Wiley & Sons; Chichester: 2006.  Chap. 3.
  • 4k Chinchilla R. Nájera C. Yus M. ARKIVOC  2007,  (x):  152 
  • For reviews, see:
  • 5a Foubelo F. Yus M. Trends Org. Chem.  1998,  7:  1 
  • 5b Foubelo F. Yus M. Curr. Org. Chem.  2005,  9:  459 
  • For reviews, see:
  • 6a Guijarro A. Gómez C. Yus M. Trends Org. Chem.  2000,  8:  65 
  • 6b Alonso F. Radivoy G. Yus M. Russ. Chem. Bull.  2003,  52:  2563 
  • 6c Alonso F. Yus M. Chem. Soc. Rev.  2004,  33:  284 
  • For mechanistic and reactivity studies on arene dianions, see:
  • 7a Yus M. Herrera RP. Guijarro A. Tetrahedron Lett.  2001,  42:  3455 
  • 7b Yus M. Herrera RP. Guijarro A. Chem. Eur. J.  2002,  8:  2574 
  • 7c Yus M. Herrera RP. Guijarro A. Tetrahedron Lett.  2003,  44:  1309 
  • 7d Herrera RP. Guijarro A. Yus M. Tetrahedron Lett.  2003,  44:  1313 
  • 7e Yus M. Herrera RP. Guijarro A. Tetrahedron Lett.  2006,  47:  6267 
  • 7f Melero C. Pérez H. Guijarro A. Yus M. Tetrahedron Lett.  2007,  48:  4105 
  • 7g Melero C. Guijarro A. Baumann V. Pérez-Jiménez AJ. Yus M. Eur. J. Org. Chem.  2007,  5514 
  • 7h Melero C. Herrera RP. Guijarro A. Yus M. Chem. Eur. J.  2007,  13:  10096 
  • 8a Ristagno CV. Lawler RG. Tetrahedron Lett.  1973,  159 
  • 8b Van Loo ME. Lugtenburg J. Cornelisse J. Eur. J. Org. Chem.  1998,  1907 
  • 9a Laguerre M. Félix G. Dunogués J. Calas R. J. Org. Chem.  1979,  44:  4275 
  • 9b Fedushkin IL. Petroskaya TV. Bochkarev MN. Dechert S. Schuman H. Angew. Chem. Int. Ed.  2001,  40:  2474 
  • 10a Eisch JJ. Fichter KC. J. Org. Chem.  1984,  49:  4631 
  • 10b Cantrell TS. Tetrahedron Lett.  1973,  1803 
  • 11 For an NMR and theoretical study on the aromaticity of the acenaphthylene dianion and related systems, see: Minsky A. Meyer AV. Hafner K. Rabinovitz M. J. Am. Chem. Soc.  1983,  105:  3975 
  • 13 For a review, see: Alonso F. Yus M. Recent Res. Dev. Org. Chem.  1997,  1:  397 
  • 15a

    Crystal data, excluding structure factors, have been deposited at the Cambridge Crystallographic Data Centre as supplementary publication numbers as follows [copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 (1223)336033; E-mail: deposit@ccdc.cam.ac.uk]: 6c, CCDC 667608: C26H38O2, M = 382.56, tetragonal, space group I41/a, Z = 8, a = 10.2698(9) Å, b = 10.2698(9) Å, c = 42.579(7) Å, V = 4490.7(10) Å3, D c = 1.132 Mg·m-3, λ = 0.71073 Å, µ = 0.069 mm-1, F(000) = 1680, T = 25±1 °C; 6d, CCDC 667607: C26H30O2, M = 374.50, monoclinic, space group P21/c, a = 12.179(3) Å, b = 7.5565(17) Å, c = 22.867(5) Å, β = 100.135(5)°, V = 2071.6(8) Å3, Z = 4, D c = 1.201 Mg·m-3, λ = 0.71073 Å, µ = 0.074 mm-1, F(000) = 808, T = 23±1 °C; 6f, CCDC 667606: C24H30O2, M = 350.22, impure with C12H22O2, triclinic, space group P1, a = 10.7269(12) Å, b = 10.9803(12) Å, c = 11.9786(13) Å, α = 69.905(2)°, β = 68.552(2)°, γ = 77.201(2)°, V = 1225.8(2) Å3, Z = 2, D c = 1.218 Mg·m-3, λ = 0.71073 Å, µ = 0.076 mm-1, F(000) = 490, T = 25±1 °C; 6h, CCDC 667609: C38H30O2, M = 518.62, triclinic, space group P1, a = 11.448(3) Å, b = 13.297(4) Å, c = 18.863(5) Å, α = 105.589(5)°, β = 90.034(7)°, γ = 91.261(6)°, V = 2765.0(13) Å3, Z = 4, D c = 1.246 Mg·m-3, λ = 0.71073 Å, µ = 0.075 mm-1, F(000) = 1096, T = 25±1 °C. Data collection was performed on a Bruker CCD-Apex diffractometer, based on three ω-scan runs (starting = -34°) at values φ = 0°, 120° and 240° with the detector at 2θ = -32°. For each of these runs, 606 frames were collected at 0.3° intervals and 20 s per frame. An additional run at φ = 0° of 100 frames was collected to improve redundancy. The diffraction frames were integrated using the program SAINT15b and the integrated intensities were corrected for Lorentz polarisation effects with SADABS.15c The structure was solved by direct methods15d and refined to all 2463 unique F o 2 by the full-matrix least-squares technique.15d All the hydrogen atoms were placed at idealised positions and refined as rigid atoms. Final wR 2 = 0.1300 for all data and 246 parameters; R 1 = 0.0424 for 2051 F o > 4σ(F o).

  • 15b SAINT Version 6.02A: Area-Detector Integration Software   Siemens Industrial Automation, Inc.; Madison WI: 1995. 
  • 15c Sheldrick GM. SADABS: Area-Detector Absorption Correction   University of Göttingen; Göttingen Germany: 1996. 
  • 15d Sheldrick GM. SHELX-97 (Includes SHELXS-97, SHELXL-97 and CIFTAB) Program for Crystal Structure Analysis (Release 97-2)   University of Göttingen; Göttingen Germany: 1998. 
  • 16 For a recent account, see: Clayden J. Yasin SA. New J. Chem.  2002,  26:  191 
  • 17 To the best of our knowledge, there is only one case reported in the literature in which the lithiation of acenaphthylene(1) in the presence or absence of liquid ammonia, followed by treatment with iodomethane, gave 1,2-disubstitution, in 33% yield; see: Usami S. Hasegawa K. Kato T. Nakamura S. Tsukashima H. Nenryo Kyokaishi  1986,  65:  996 ; Chem. Abstr. 1987, 106, 159278
12

The lithiation of acenaphthylene in tetrahydrofuran, with or without liquid ammonia, followed by trapping of the anionic intermediates with an alkyl halide leads mainly to substitu-tion at position 1 or 5, respectively (see reference 7h).

14

In reference 10b, the lithiation of acenaphthene (4) with an excess of n-butyllithium, followed by treatment with benzophenone, gave 32% of a diol resulting from 1,5-disubstitution. The physical and spectroscopic data of this diol coincide with those of our compound 6h in which the electrophilic fragments occupy the 1,2-positions.

18

As this compound was isolated in a very low yield, and the isolated product was ca. 70% pure (by GLC), the 1H and 13C NMR assignments were difficult to undertake.