Abstract
An efficient protocol for the 1,3-transposition of allylic alcohols has been developed.
The method is based on the pretransformation of allylic alcohols into the corresponding
epoxy mesylates, followed by the reductive elimination of the resulting epoxy mesylates
by using lithium naphthalenide (LN) as a reducing agent.
Key words
allylic alcohols - 1,3-transposition - epoxy mesylates - reductive elimination - lithium
naphthalenide
References and Notes
<A NAME="RW20507ST-1">1 </A>
Larock RC.
Comprehensive Organic Transformation
2nd ed.:
Wiley-VCH;
Weinheim:
1999.
p.227-228
<A NAME="RW20507ST-2A">2a </A>
Pepito AS.
Dittmer DC.
J. Org. Chem.
1994,
59:
4311
<A NAME="RW20507ST-2B">2b </A>
Dittmer DC.
Discordia RP.
Zhang Y.
Murphy CK.
Kumar A.
Pepito AS.
Wang Y.
J. Org. Chem.
1993,
58:
718
<A NAME="RW20507ST-3A">3a </A>
Lee E.
Lee YR.
Moon B.
Kwon O.
Shim MS.
Yun JS.
J. Org. Chem.
1994,
59:
1444
<A NAME="RW20507ST-3B">3b </A>
Mori K.
Ueda H.
Tetrahedron
1981,
37:
2581
<A NAME="RW20507ST-4">4 </A>
Yasuda A.
Yamamoto H.
Nozaki H.
Tetrahedron Lett.
1976,
2621
For some examples, see:
<A NAME="RW20507ST-5A">5a </A>
Marshall JA.
Jenson TM.
J. Org. Chem.
1984,
49:
1707
<A NAME="RW20507ST-5B">5b </A>
Paquette LA.
Ham WH.
J. Am. Chem. Soc.
1987,
109:
3025
<A NAME="RW20507ST-5C">5c </A>
Marshall JA.
Robinson ED.
Adams RD.
Tetrahedron Lett.
1988,
29:
4913
<A NAME="RW20507ST-5D">5d </A>
Marshall JA.
Robinson ED.
Robinson ED.
Lebreton J.
J. Org. Chem.
1990,
55:
227
<A NAME="RW20507ST-5E">5e </A>
Kocienski PJ.
Tideswell J.
Synth. Commun.
1979,
9:
411
<A NAME="RW20507ST-5F">5f </A>
Yasuda H.
Yamamoto H.
Nozaki H.
Bull. Chem. Soc. Jpn.
1979,
52:
1757
For some examples of using LN as a reducing reagent, see:
<A NAME="RW20507ST-6A">6a </A>
Guijarro A.
Roman DJ.
Yus M.
Tetrahedron
1993,
49:
469
<A NAME="RW20507ST-6B">6b </A>
Guijarro A.
Yus M.
Tetrahedron Lett.
1994,
35:
253
<A NAME="RW20507ST-6C">6c </A>
Kondo Y.
Murata N.
Sakamoto T.
Heterocycles
1994,
37:
1467
<A NAME="RW20507ST-6D">6d </A>
Zhu JL.
Shia KS.
Liu HJ.
Chem. Commun.
2000,
1599
<A NAME="RW20507ST-6E">6e </A>
Chien CF.
Wu JD.
Ly TW.
Shia KS.
Liu HJ.
Chem. Commun.
2002,
248
<A NAME="RW20507ST-7">7 </A>
Bannai K.
Tanaka T.
Okamura N.
Hazato A.
Sugiura S.
Manabe K.
Tomimori K.
Kurozumi S.
Tetrahedron Lett.
1986,
27:
6353
<A NAME="RW20507ST-8">8 </A>
Kaneti I.
Tetrahedron
1986,
42:
4017
<A NAME="RW20507ST-9">9 </A>
The stereochemistry of 1a was elucidated based on the coupling constant in the 1 H NMR spectrum.
<A NAME="RW20507ST-10">10 </A>
Typical Procedure for the Reductive Elimination of Epoxy Mesylates : A stock solution of LN
[11 ]
in THF (0.365 M, 20.4 mL, 7.43 mmol) precooled to -25 °C was quickly added by syringe
to a solution of 1a (580 mg, 2.48 mmol) in anhyd THF (5 mL) at -25 °C under a nitrogen atmosphere. The
resulting dark mixture was stirred at -25 °C for 10 min, then was quenched with H2 O (10 mL) and extracted with EtOAc (2 × 20 mL). The combined extracts were washed
with sat. aq NaCl (10 mL), dried with Na2 SO4 and concentrated. Purification by chromatography on silica gel (hexane; EtOAc-hexane,
1:10) afforded 1,5,5-trimethyl-cyclohex-2-enol (2a ) as a viscous oil (291 mg, 84%). IR (KBr): 3490, 1675 cm-1 . 1 H NMR (400 MHz, CDCl3 ): δ = 5.66 (dt, J = 1.5, 9.9 Hz, 1 H), 5.69 (d, J = 9.9 Hz, 1 H), 1.79 (dd, J = 1.5, 15.1 Hz, 1 H), 1.77 (dd, J = 1.5, 15.1 Hz, 1 H), 1.64 (d, J = 14.0 Hz, 1 H), 1.53 (d, J = 14.0 Hz, 1 H), 1.24 (s, 3 H), 1.02 (s, 3 H), 0.93 (s, 3 H). 13 C NMR (100 MHz, CDCl3 ): δ = 132.4, 126.9, 68.2, 50.4, 38.9, 31.0, 30.9, 29.8, 27.6. HRMS (EI): m /z [M]+ calcd for C9 H16 O: 140.1201; found: 140.1204.
<A NAME="RW20507ST-11">11 </A> For preparing a stock solution of LN, see:
Liu HJ.
Yip J.
Shia KS.
Tetrahedron Lett.
1997,
38:
2253
<A NAME="RW20507ST-12A">12a </A>
Sharpless KB.
Michaelson RC.
J. Am. Chem. Soc.
1973,
95:
6136
<A NAME="RW20507ST-12B">12b </A>
Sharpless KB.
Hanson RM.
J. Org. Chem.
1986,
51:
1922
<A NAME="RW20507ST-13">13 </A>
Mordini A.
Rayana EB.
Margot C.
Schlosser M.
Tetrahedron
1990,
46:
2401
<A NAME="RW20507ST-14A">14a </A>
Magnusson G.
Thoren SJ.
J. Org. Chem.
1973,
38:
1380
<A NAME="RW20507ST-14B">14b </A>
Jia YX.
Li X.
Wu B.
Zhao XZ.
Tu YQ.
Tetrahedron
2002,
58:
1697
<A NAME="RW20507ST-14C">14c </A>
Motherwell WB.
Bingham MJ.
Pothier J.
Six Y.
Tetrahedron
2004,
60:
3231
<A NAME="RW20507ST-14D">14d </A>
Brownstein S.
Burton GW.
Hughes L.
Ingold KU.
J. Org. Chem.
1989,
54:
560
<A NAME="RW20507ST-14E">14e </A>
Roush WR.
Straub JA.
Brown RJ.
J. Org. Chem.
1987,
52:
5127
<A NAME="RW20507ST-14F">14f </A>
Kumar A.
Dittmer DC.
Tetrahedron Lett.
1994,
35:
5583
<A NAME="RW20507ST-14G">14g </A>
Alcaraz L.
Cridland A.
Kinchin E.
Org. Lett.
2001,
3:
4051
<A NAME="RW20507ST-14H">14h </A>
Martin VS.
Ode JM.
Jesus M.
Palazon JM.
Soler MA.
Tetrahedron: Asymmetry
1992,
3:
573
<A NAME="RW20507ST-14I">14i </A>
Carvero RM.
Gonzalez-Sierra M.
Labadie GR.
Helv. Chim. Acta
2003,
86:
2741