Subscribe to RSS
DOI: 10.1055/s-2007-990794
Reactivity and Utility of Allenylphosphonates: Formation of a Novel Hydroperoxide and Propargylic Alcohol and Facile Thiol Addition under Catalyst-Free, Solvent-Free Conditions
Publication History
Publication Date:
21 September 2007 (online)

Abstract
2-(Propa-1,2-dienyl)-, 2-(buta-1,2-dienyl)-, and 2-(3-methylbuta-1,2-dienyl)-substituted 5,5-dimethyl-1,3,2-dioxaphosphinane 2-oxides 1a-c react readily upon heating with thiols under catalyst-free, base-free, and solvent-free conditions to give sulfanyl-substituted phosphonates. The reaction undergoes to essential completion within 15 minutes under microwave radiation. While 1a,b react with 4-chlorothiophenol to afford both 2-[2-(4-chlorophenylsulfanyl)prop-1-enyl]- 12 and 2-[2-(4-chlorophenylsulfanyl)prop-2-enyl]-5,5-dimethyl-1,3,2-dioxaphosphinane 2-oxides 13, 1c gives 2-[2-(4-chlorophenylsulfanyl)-3-methylbut-2-enyl]-5,5-dimethyl-1,3,2-dioxaphosphinane 2-oxide (13d) regioselectively. Molecular oxygen undergoes a novel reaction with the allene 1c to give propargylic alcohol 2-(3-hydroxy-3-methylbut-1-ynyl)-5,5-dimethyl-1,3,2-dioxaphosphinane 2-oxide (16) via the corresponding hydroperoxide; the structures of these were confirmed by X-ray crystallography. The synthetic utility of the sulfanyl-substituted allyphosphonate 13d in the Horner-Wadsworth-Emmons reaction to afford synthetically valuable sulfanyl-substituted buta-1,3-dienes and a conjugated triene is demonstrated.
Key words
allenes - thiol addition - oxygenation - Horner-Wadsworth-Emmons reaction - allenylphosphonates
- 1a
Yamamoto Y.Radhakrishnan U. Chem. Soc. Rev. 1999, 28: 199 - 1b
Zimmer R.Dinesh CU.Nandanan E.Khan FA. Chem. Rev. 2000, 100: 3067 - 1c
Lu X.Zhang C.Xu Z. Acc. Chem. Res. 2001, 34: 535 - 1d
Bates RW.Satcharoen V. Chem. Soc. Rev. 2002, 31: 12 - 1e
.
Xiong H.Hsung RP. Acc. Chem. Res. 2003, 36: 773 - 1f
Ma S. Acc. Chem. Res. 2003, 36: 701 - 1g
Hoffmann-Röder A.Krause N. Angew. Chem. Int. Ed. 2004, 43: 1196 - 1h
Ma S. Chem. Rev. 2005, 105: 2829 - 2a
Chang H.-M.Cheng CH. J. Org. Chem. 2000, 65: 1767 - 2b
Huang T.-H.Chang H.-M.Wu MY.Cheng CH. J. Org. Chem. 2002, 67: 99 - 2c
Friese JC.Krause S.Schäfer HJ. Tetrahedron Lett. 2002, 43: 2683 - 2d
Chang Wu M.-S.Rayabarapu DK.Cheng CH. J. Am. Chem. Soc. 2003, 125: 12426 - 2e
Oh CH.Ahn TW.Raghava Reddy V. Chem. Commun. 2003, 2622 - 2f
Ma S.Jiao N.Ye L. Chem. Eur. J. 2003, 9: 6049 - 2g
Fürmeier S.Lau MML.Jie MSFLK.Lützen A.Metzger JO. Eur. J. Org. Chem. 2003, 4874 - 2h
Fleming SA.Carroll SM.Hirshi J.Liu R.Pace JL.Redd JT. Tetrahedron Lett. 2004, 45: 3341 - 2i
Hopkins CD.Malinakova HC. Org. Lett. 2004, 6: 2221 - 2j
Silvetri MA.Bromfield DC.Lepore SE. J. Org. Chem. 2005, 70: 8239 - 2k
Fu C.Ma S. Org. Lett. 2005, 7: 1707 - 3a
Schuster HF.Coppola GM. Allenes in Organic Synthesis John Wiley & Sons; New York: 1984. p.247-252 - 3b
Alabugin IV.Brei VK. Russ. Chem. Rev. (Engl. Transl.) 1997, 66: 205 - 3c
Patois C.Richard L.Savignac P. J. Chem. Soc., Perkin Trans. 1 1990, 1577 - 3d
Zapata AJ.Gu Y.Hammond GB. J. Org. Chem. 2000, 65: 227 - 3e
Zhao CQ.Han LB.Tanaka M. Organometallics 2000, 19: 4196 - 3f
Rubin M.Markov J.Chuprakov S.Wink DJ.Gevorgyan V. J. Org. Chem. 2003, 68: 6251 - 3g
Wu Z.Huang X. Synlett 2005, 526 - 3h
Nishimura T.Hirabayashi S.Hayashi T. J. Am. Chem. Soc. 2006, 126: 2556 - 3i
Ma S.Guo H.Yu F. J. Org. Chem. 2006, 71: 6634 - 3j
Chakravarty M.Kumara Swamy KC. J. Org. Chem. 2006, 71: 9128 - 4a
Palacios F.Aparicio D.García J. Tetrahedron 1996, 52: 9609 - 4b
Zapata AJ.Gu Y.Hammond GB. J. Org. Chem. 2000, 65: 227 - 4c
Johnson JS.Bergman RG. J. Am. Chem. Soc. 2001, 123: 2923 - 5
Kumara Swamy KC.Balaraman E.Satish Kumar N. Tetrahedron 2006, 62: 10152 - 6a
Lu X.Zhang C.Xu Z. Acc. Chem. Res. 2001, 34: 535 - 6b
Zhang C.Lu X. Synlett 1995, 645 - 7a
Jacobs TL.Illingworth GE. J. Org. Chem. 1963, 28: 2692 - 7b
Pasto DJ.Warren SE.Morrison MA. J. Org. Chem. 1981, 46: 2837 - 7c
Ogawa A.Kawakami J.-i.Sonoda N.Hirao T. J. Org. Chem. 1996, 61: 4161 - 8a
Pudovik AN.Khusainova NG.Abdulina TA. J. Gen. Chem. USSR (Engl. Transl.) 1967, 37: 809 - 8b
Khusainova NG.Mostovaya OA.Berdnikov EA.Efremov YY.Sharafutdinova DR.Cherkasov RA. Russ. Chem. Bull. (Engl. Transl.) 2004, 53: 2253 - 8c
Khusainova NG.Mostovaya OA.Berdnikov EA.Cherkasov RA. Russ. Chem. Bull. (Engl. Transl.) 2003, 52: 1033 - 9a
Muthiah C.Praveen Kumar K.Aruna Mani C.Kumara Swamy KC. J. Org. Chem. 2000, 65: 3733 - 9b
Muthiah C.Senthil Kumar K.Vittal JJ.Kumara Swamy KC. Synlett 2002, 1787 - 9c
Kumaraswamy S.Kommana P.Satish Kumar N.Kumara Swamy KC. Chem. Commun. 2002, 40 - 9d
Chakravarty M.Srinivas B.Muthiah C.Kumara Swamy KC. Synthesis 2003, 2368 - 9e
Balaraman E.Kumara Swamy KC. Synthesis 2004, 3037 - 9f
Satish Kumar N.Praveen Kumar K.Pavan Kumar KVP.Kommana P.Vittal JJ.Kumara Swamy KC. J. Org. Chem. 2004, 69: 1880 - 9g
Kumara Swamy KC.Kumaraswamy S.Senthil Kumar K.Muthiah C. Tetrahedron Lett. 2005, 46: 3347 - 9h
Kumara Swamy KC.Praveen Kumar K.Bhuvan Kumar NN. J. Org. Chem. 2006, 71: 1002 - 9i
Kumara Swamy KC.Satish Kumar N. Acc. Chem. Res. 2006, 39: 324 - 9j
Bhuvan Kumar NN.Chakravarty M.Kumara Swamy KC. New J. Chem. 2006, 30: 1614 - 13
Sander W.Patyk A. Angew. Chem., Int. Ed. Engl. 1987, 26: 475 ; and references cited therein - 14 Such trienes are perhaps useful in cyclization reactions, see:
Murahashi T.Nakashima H.Nagai T.Mino Y.Okuno T.Jalil MA.Kurosawa H. J. Am. Chem. Soc. 2006, 128: 4377 ; and references cited therein - 15
Zhijie N.Padwa A. Synlett 1992, 869 - 16a
Organic Chemistry of Sulfur
Oae S. Plenum; New York: 1977. - 16b
Bernardi F.Mangini E. Organic Sulfur Chemistry: Theoretical and Experimental Advances Elsevier; Amsterdam: 1985. - 18
Perrin DD.Armarego WLF.Perrin DR. Purification of Laboratory Chemicals Pergamon; Oxford: 1986. - 19a
Satish Kumar N. Ph.D. Thesis University of Hyderabad; India: 2004. - 19b
Guillemin JC.Savignac P.Denis JM. Inorg. Chem. 1991, 30: 2170 - 20a
Sheldrick GM. SADABS, Siemens Area Detector Absorption Correction University of Göttingen; Germany: 1996. - 20b
Sheldrick GM. SHELXTL NT Crystal Structure Analysis Package version 5.10: Bruker AXS, Analytical X-ray System; WI USA: 1999.
References
The 1H NMR spectrum of this mixture showed peaks at δ = 3.40 (d, J = 22.0 Hz), in addition to those for 12a and 1a. There was also an additional minor peak in the initial stages in the 31P NMR at δ = 23.9 (unassigned).
11Compound 15 was more difficult to obtain in a pure form, probably because of conversion into 16.
12When we tried to separate this compound from 5,5-diethyl-2-(3-methylbuta-1,2-dienyl)-1,3,2-dioxaphosphinane 2-oxide using column chromatography, a small quantity of an additional species [δ(P) -12.2] was noticed in a few fractions.
17IR (KBr): 3399, 2928, 1570, 1335, 1206, 1057, 1005 cm-1; 1H NMR (400 MHz, CDCl3): δ = 0.99 and 1.10 (2 s, 6 H, 2 CH 3), 2.01-2.06 [2 m due to coupling to phosphorus and CH2 with J <5.0 Hz, 6 H, =C(CH 3)2], 3.34 (dd, J ˜4.0 Hz, J ˜20.6 Hz, 2 H, PCH 2), 3.79-4.95 (m, 9 H, CH 2OH, CHCH2OH, 2 CHOH, OCH 2), 5.90 (d, J ˜7.0 Hz, OCHN of ribose), 8.13 (s, 1 H, nucleobase-H), 8.62 (s, 1 H, Nucleobase-H); LC-MS showed a peak at m/z 503.