Subscribe to RSS
DOI: 10.1055/s-2007-980355
Observations on the Regioselectivity of Glycosylation of Mannose and Glucose: Selective Glycosylation of the Secondary 4-Hydroxyl of 4,6-Diol Acceptors
Publication History
Publication Date:
23 May 2007 (online)

Abstract
The regioselectivity of glycosylation of manno and gluco acceptor diols possessing free hydroxyl groups at the 4- and 6-positions is found to be strongly dependent on functionalization of the 3-hydroxyl group. Surprisingly, highly regioselective glycosylation of the more hindered 4-hydroxyl can be readily achieved in the presence of the primary 6-hydroxyl in cases where the 3-hydroxyl of the acceptor is protected as a benzyl ether and when the donor possesses an ester participating group at the 2-position. However, reverse regioselectivity, namely glycosylation of the 6-hydroxyl, is observed when the 3-hydroxyl has been previously glycosylated.
Key words
carbohydrates - regioselectivity - glycosylations - N-glycans - mannose
- 1a 
             
            Varki A. Glycobiology 1993, 3: 97
- 1b 
             
            Dwek RA. Chem. Rev. 1996, 96: 683
- For some leading references, see:
- 2a 
             
            Matsuo I.Wada M.Manabe S.Yamaguchi Y.Otake K.Kato K.Ito Y. J. Am. Chem. Soc. 2003, 125: 3402
- 2b 
             
            Wu B.Hua Z.Warren JD.Ranganathan K.Wan Q.Chen G.Tan Z.Chen J.Endo A.Danishefsky SJ. Tetrahedron Lett. 2006, 47: 5577
- 2c 
             
            Wu X.Grathwohl M.Schmidt RR. Angew. Chem. Int. Ed. 2002, 41: 4489
- 2d 
             
            Du Y.Zhang M.Kong F. Tetrahedron 2001, 57: 1757
- 2e 
             
            Chiesa MV.Schmidt RR. Eur. J. Org. Chem. 2000, 3541
- 2f 
             
            Paulsen H. Angew. Chem., Int. Ed. Engl. 1990, 29: 823
- 3 
             
            Schachter H. In Carbohydrates in Chemistry and Biology Vol. 3:Ernst B.Hart GW.Sinaӱ P. Wiley-VCH; Weinheim: 2000. p.155Reference Ris Wihthout Link
- 4a 
             
            Schuberth R.Unverzagt C. Tetrahedron Lett. 2005, 46: 4210
- 4b 
             
            Weiss H.Unverzagt C. Angew. Chem. Int. Ed. 2003, 42: 4261
- 4c 
             
            Unverzagt C. Angew. Chem., Int. Ed. Engl. 1997, 36: 1989
- 5 
             
            Rising TWDF.Claridge TDW.Moir JWB.Fairbanks AJ. ChemBioChem 2006, 7: 1177
- 6 
             
            Rising TWDF.Claridge TDW.Davies N.Gamblin DP.Moir JWB.Fairbanks AJ. Carbohydr. Res. 2006, 341: 1574
- 7a 
             
            Jiang L.Chan T.-H. Tetrahedron Lett. 1998, 39: 355
- 7b 
             
            Okawa M.Liu WC.Nakai Y.Koshida S.Fukase K.Kusumoto S. Synlett 1996, 1179
- 7c 
             
            Garegg PJ. Pure Appl. Chem. 1984, 56: 845
- 7d 
             
            Lipták A.Imre J.Harangi J.Nánási P.Neszmélyi A. Tetrahedron 1982, 38: 3721
- 7e 
             
            Bhattacharjee SS.Gorin PAJ. Can. J. Chem. 1969, 47: 1195
- 8 For a recent review of some reciprocal donor/acceptor selectivity which may control
            the regiochemistry of glycosylation of different secondary hydroxyl groups, see:  
            Fraser-Reid B.López JC.Gómez AM.Uriel C. Eur. J. Org. Chem. 2004, 1387
- For some recent examples, see:
- 9a 
             
            López JC.Agocs A.Uriel C.Gómez AM.Fraser-Reid B. Chem. Commun. 2005, 5088
- 9b 
             
            Chou C.-H.Wu C.-S.Chen C.-H.Lu L.-D.Kulkarni SS.Wong C.-H.Hung S.-C. Org. Lett. 2003, 4: 585
- 9c 
             
            Zeng Y.Kong F. Carbohydr. Res. 2003, 338: 843
- 10 
             
            Wuts PGM.Greene TW. Protective Groups in Organic Synthesis 4th ed: Wiley; New York: 2007.Reference Ris Wihthout Link
- 11a 
             
            Watt GM.Boons G.-J. Carbohydr. Res. 2004, 339: 181
- 11b 
             
            Smiljanic N.Halila S.Moreau V.Djedaïni-Pilard F. Tetrahedron Lett. 2003, 44: 8999
- 11c 
             
            Wang W.Kong F. J. Org. Chem. 1999, 64: 5091
- 11d 
             
            Boons GJ.Zhu T. Synlett 1997, 809
- 15 For examples of the regioselective glycosylation of secondary carbohydrate trityl
            ethers in the presence of primary ones, see:  
            Tsvetkov YE.Kitov PI.Backinowsky LV.Kochetkov NK. Tetrahedron Lett. 1993, 34: 7977
- 18 
             
            Paulsen H. Angew. Chem., Int. Ed. Engl. 1982, 21: 155
- 19a 
             
            Cid MB.Valverde S.López JC.Gómez AM.García M. Synlett 2005, 1095
- 19b 
             
            Cid MB.Alfonso F.Martín-Lomas M. Synlett 2005, 2052
- 19d 
             
            Sinaӱ P. Pure Appl. Chem. 1978, 50: 1437
- 20 For a recent review of the uses and intermediacy of sugar orthoesters, see:  
            Kong F. Carbohydr. Res. 2007, 342: 345
- 21 
             
            Mootoo DR.Konradsson P.Udodong U.Fraser-Reid B. J. Am. Chem. Soc. 1988, 110: 5583
- 22a 
             
            Fraser-Reid B.López JC.Radhakrishnan KV.Mach M.Schlueter U.Gómez AM.Uriel C. Can. J. Chem. 2002, 124: 1075
- 22b 
             
            Fraser-Reid B.Anilkumar GN.Nair LG.Radhakrishnan KV.López JC.Gómez A.Uriel C. Aust. J. Chem. 2002, 55: 123
- 22c 
             
            López JC.Gómez A.Fraser-Reid B.Uriel C. Tetrahedron Lett. 2003, 44: 1417
References and Notes
         Typical Glycosylation Procedure
         
Diol glycosyl acceptor (˜40 mg) and trichloroacetimidate glycosyl donor (˜30 mg, 1.1
         equiv) were dissolved in dry CH2Cl2 (˜5 mL) and transferred via canula to a flame-dried round-bottomed flask containing
         activated 4 Å MS (10 mg). The solution was cooled to -60 °C and stirred under an atmosphere
         of argon. TMSOTf (0.05 equiv) was added. The reaction mixture was stirred under argon,
         and allowed to warm to r.t. slowly. After 15 h, TLC (typically PE-EtOAc, 1:1) indicated
         formation of a major product (typically R
         
            f
             = 0.25) and complete consumption of trichloroacetimidate donor (typically R
         
            f
             = 0.5). Then, Et3N (10 µL) was added and the solution stirred for a further 10 min. The reaction mixture
         was then filtered through Celite® and the filtrate concentrated in vacuo. The residue was then purified by flash column
         chromatography (typically eluting with PE-EtOAc, 1:1) to give the α(1→4)-linked trisaccharide
         product as a white foam.
Selected data for 7: white foam; [α]D 24 +38 (c 1.0, CHCl3). IR (KBr disc): νmax = 3473 (br, OH), 1777, 1744, 1715 (s, C=O) cm-1. 1H NMR (500 MHz, CDCl3): δ = 2.05, 2.13 [6 H, 2 × s, OC(O)CH3], 3.14 (1 H, ddd, J 4b,5b = 9.5 Hz, J 5b,6b = 5.4 Hz, J 5b,6 ′b 2.2 Hz, H-5b), 3.38 (1 H, dd, J 2b,3b = 3.1 Hz, J 3b,4b = 9.3 Hz, H-3b), 3.54 (1 H, dd, J 6b,6 ′b 12.1 Hz, H-6b), 3.63-3.76 (9 H, m, H-4c, H-5a, H-5c, H-6c, H-6′b, H-6′c, OCH3), 3.79 (1 H, dd, J 5a,6a = 2.0 Hz, J 6a, 6 ′a = 11.4 Hz, H-6a), 3.82-3.85 (1 H, m, H-3c, H-6′a), 3.90 (1 H, app t, J = 9.4 Hz, H-4b), 4.16 (1 H, app t, J = 9.2 Hz, H-4a), 4.31, 4.59 (2 H, ABq, J = 10.8 Hz, PhCH2), 4.33 (1 H, dd, J 2a,3a = 10.7 Hz, J 3a,4a = 8.5 Hz, H-3a), 4.39 (1 H, dd, J 1a,2a = 8.4 Hz, H-2a), 4.43, 4.81 (2 H, ABq, J = 10.9 Hz, PhCH2), 4.46, 4.89 (2 H, ABq, J = 12.4 Hz, PhCH2), 4.49, 4.77 (2 H, ABq, J = 12.1 Hz, PhCH2), 4.51, 4.75 (2 H, ABq, J = 11.0 Hz, PhCH2), 4.52, 4.61 (2 H, ABq, J = 12.3 Hz, PhCH2), 4.67 (1 H, s, H-1b), 5.33 (1 H, d, J 1c,2c = 1.6 Hz, H-1c), 5.47-5.485 (2 H, m, H-2b, H-2c), 5.61 (1 H, d, H-1a), 6.69-6.72 (2 H, m, 2 × Ar-H), 6.79-6.82 (2 H, m, 2 × Ar-H), 6.85-6.91 (3 H, m, 3 × ArH), 7.01-7.03 (2 H, m, 2 × ArH), 7.13-7.14 (2 H, m, 2 × ArH), 7.21-7.36 (23 H, m, 23 × ArH), 7.61-7.85 (4 H, m, 4 × ArH). 13C NMR (125.8 MHz, CDCl3): δ = 21.0, 21.0 [2 × q, 2 × OC(O)CH3], 55.6 (q, OCH3), 55.6 (d, C-2a), 61.8 (t, C-6b), 67.5 (d, C-2b), 68.3 (t, C-6a), 68.5 (d, C-2c), 68.7 (t, C-6c), 71.1 (t, PhCH2), 71.6 (d, C-4b), 71.8 (t, PhCH2), 72.4 (d, C-5c), 73.4, 73.5 (2 × t, 2 × PhCH2), 74.0 (d, C-4c), 74.5 (d, C-5a), 74.8 (t, PhCH2), 75.0 (d, C-5b), 75.1 (t, PhCH2), 76.9 (d, C-3a), 78.2 (d, C-3c), 78.6 (d, C-4a), 80.2 (d, C-3b), 97.6 (d, C-1a), 98.5 (d, C-1b), 99.2 (d, C-1c), 114.3, 118.6, 123.3, 127.3, 127.6, 127.6, 127.7, 127.8, 127.9, 127.9, 128.0, 128.1, 128.3, 128.4, 128.4, 128.5, 128.6 (17 × d, 36 × ArC), 131.5 (s, 2 × ArC), 133.8 (d, 2 × ArC), 136.9, 137.9, 137.9, 137.9, 138.2, 138.2, 150.8, 155.4 (8 × s, 8 × ArC), 169.9, 170.3 (2 × s, 4 × C=O); J C-1a/H-1a = 166 Hz (β), J C-1b/H-1b = 160 Hz (β), J C-1c/H-1c = 176 Hz (α). MS (ESI+) [M + MeCN/NH4 +](major), [M + Na+]: m/z calcd (%) = 1386.5 (100), 1387.6 (88), 1388.6 (42), 1389.6 (14), 1390.6 (4) [M + Na+]; found: 1386.5 (100), 1387.6 (83), 1388.6 (32), 1389.6 (8), 1390.6 (2).
14In all cases the regiochemistry of the newly formed anomeric linkage was identified by a combination of 2D NMR experiments including COSY, HSQC, HSQC ‘non-decoupled’, HSQC-TOCSY, TOCSY, HMBC, and DEPT.
16Selected data for 9: white foam; [α]D 24 +44 (c 1.0, CHCl3). IR (KBr disc): νmax = 3477 (br, OH), 1776, 1747, 1716 (s, C=O) cm-1. 1H NMR (500 MHz, CDCl3): δ = 2.00, 2.17 [6 H, 2 × s, C(O)CH3], 2.19-2.25, 2.42-2.49 [2 H, 2 × m, OC(O)CH2CH2], 2.54-2.60, 2.72-2.79 [2 H, 2 × m, OC(O)CH2CH2], 3.20 (1 H, ddd, J 4b,5b = 9.4 Hz, J 5b,6b = 5.2 Hz, J 5b,6 ′b = 2.0 Hz, H-5b), 3.52 (1 H, dd, J 6b,6 ′b = 12.5 Hz, H-6b), 3.53 (1 H, app t, J = 9.1 Hz, H-3b), 3.64-3.69 (3 H, m, H-5a, H-6c, H-6′c), 3.71 (3 H, s, OCH3), 3.73-3.78 (3 H, m, H-4c, H-5c, H-6′b), 3.81-3.86 (3 H, m, H-3c, H-4b, H-6a), 3.89 (1 H, dd, J 5a,6 ′a = 3.1 Hz, J 6a,6 ′a = 11.2 Hz, H-6′a), 4.09 (1 H, app t, J = 9.2 Hz, H-4a), 4.30 (1 H, dd, J 2a,3a = 10.7 Hz, J 3a,4a = 8.6 Hz, H-3a), 4.38 (1 H, dd, J 1a,2a = 8.4 Hz, H-2a), 4.44-4.46 (2 H, m, 2 × PhCH), 4.48, 4.60 (2 H, ABq, J = 12.2 Hz, PhCH2), 4.50-4.53 (1 H, m, H-1b), 4.52, 4.71 (2 H, ABq, J = 11.0 Hz, PhCH2), 4.52, 4.81 (2 H, ABq, J = 11.6 Hz, PhCH2), 4.61, 4.73 (2 H, ABq, J = 11.4 Hz, PhCH2), 4.83 (2 H, m, 2 × PhCH), 5.00 (1 H, dd, J 1b,2b = 8.5 Hz, J 2b,3b = 9.2 Hz, H-2b), 5.30 (1 H, d, J 1c,2c = 1.5 Hz, H-1c), 5.45 (1 H, dd, J 2c,3c = 2.8 Hz, H-2c), 5.61 (1 H, d, H-1a), 6.67-6.71 (2 H, m, 2 × ArH), 6.80-6.88 (5 H, m, 5 × Ar-H), 7.02-7.04 (2 H, m, 2 × Ar-H), 7.14-7.16 (2 H, m, 2 × ArH), 7.21-7.40 (23 H, m, 23 × ArH), 7.59-7.87 (4 H, m, 4 × ArH). 13C NMR (125.8 MHz, CDCl3): δ = 20.9 [q, OC(O)CH3], 27.7 [t, OC(O)CH2CH2], 29.8 [q, CC(O)CH3], 37.6 [t, OC(O)CH2CH2], 55.6 (q, OCH3), 55.6 (d, C-2a), 61.6 (t, C-6b), 67.6 (t, C-6a), 68.7 (t, C-6c), 68.7 (d, C-2c), 71.9 (t, PhCH2), 72.5 (d, C-5c), 73.5, 73.6 (2 × t, 2 × PhCH2), 73.8 (d, C-2b), 74.0 (d, C-4c), 74.5 (d, C-4b), 74.5 (t, PhCH2), 74.8 (d, C-5b), 74.9 (d, C-5a), 74.9, 75.1 (2 × t, 2 × PhCH2), 76.8 (d, C-3a), 78.1 (2 × d, C-3c, C-4a), 83.6 (d, C-3b), 97.5 (d, C-1a), 98.9 (d, C-1c), 100.2 (d, C-1b), 114.3, 118.7, 123.3, 127.1, 127.1, 127.4, 127.7, 127.7, 127.8, 127.9, 127.9, 127.9, 127.9, 128.0, 128.2, 128.3, 128.3, 128.4, 128.5 (19 × d, 36 × ArC), 131.6 (s, 2 × ArC), 133.7 (d, 2 × ArC), 137.8, 137.8, 137.9, 138.0, 138.1, 138.3, 150.8, 155.3 (8 × s, 8 × ArC), 170.0, 171.2, 206.1 (3 × s, 5 × C=O); J C-1a/H-1a = 166 Hz (β), J C-1b/H-1b = 163 Hz (β), J C-1c/H-1c = 176 Hz (α). MS (ESI+) [M + MeCN/NH4 +](major), [M + Na+]: m/z calcd (%) = 1442.6 (100), 1443.6 (91), 1444.6 (45), 1445.6 (16), 1446.6 (5) [M + Na+]; found: 1442.6 (100), 1443.6 (90), 1444.6 (37), 1445.6 (9), 1446.6 (2).
17Selected data for 11: white foam; [α]D 19 +16 (c 1.0, CHCl3). IR (KBr disc): νmax = 3445 (br, OH), 1777, 1717 (s, C=O) cm-1. 1H NMR (500 MHz, CDCl3): δ = 2.17 [3 H, s, C(O)CH3], 2.18-2.24, 2.42-2.48 [2 H, 2 × m, OC(O)CH2CH2], 2.54-2.60, 2.72-2.79 [2 H, 2 × m, OC(O)CH2CH2], 3.22 (1 H, ddd, J 4b,5b = 9.5 Hz, J 5b,6b = 5.5 Hz, J 5b,6 ′b = 2.1 Hz, H-5b), 3.52 (1 H, dd, J 6b,6 ′b = 12.2 Hz, H-6b), 3.55 (1 H, app t, J = 9.1 Hz, H-3b), 3.66-3.85 (10 H, m, H-4b, H-5a, H-5c, H-6a, H-6c, H-6′b, H-6′c, OCH3), 3.89 (1 H, dd, J 5a,6 ′a = 3.3 Hz, J 6a,6 ′a = 11.1 Hz, H-6′a), 3.95 (1 H, app t, J = 9.2 Hz, H-4c), 3.99 (1 H, dd, J 2c,3c = 2.8 Hz, J 3c,4c = 9.2 Hz, H-3c), 4.09 (1 H, app t, J = 8.9 Hz, H-4a), 4.30 (1 H, dd, J 2a,3a = 10.7 Hz, J 3a,4a = 8.5 Hz, H-3a), 4.39 (1 H, dd, J 1a,2a = 8.5 Hz, H-2a), 4.44 (1 H, d, J = 12.4 Hz, PhCH), 4.49-4.53 (4 H, m, H-1b, 3 × PhCH), 4.57 (1 H, d, J = 11.4 Hz, PhCH), 4.60 (1 H, d, J = 11.3 Hz, PhCH), 4.66 (1 H, d, J = 12.1 Hz, PhCH), 4.78 (1 H, d, J = 12.7 Hz, PhCH), 4.80-4.84 (4 H, m, 4 × PhCH), 4.98 (1 H, dd, J 1b,2b = 8.2 Hz, J 2b,3b = 9.4 Hz, H-2b), 5.42 (1 H, d, J 1c,2c = 1.7 Hz, H-1c), 5.61 (1 H, d, H-1a), 5.68 (1 H, app t, J = 2.3 Hz, H-2c), 6.69-6.71 (2 H, m, 2 × ArH), 6.81-6.89 (4 H, m, 4 × ArH), 7.02-7.39 (30 H, m, 30 × ArH), 7.53-7.83 (5 H, m, 5 × ArH), 7.96-7.98 (2 H, m, 2 × ArH). 13C NMR (125.8 MHz, CDCl3): δ = 27.7 [t, OC(O)CH2CH2], 29.9 [q, CC(O)CH3], 37.7 [t, OC(O)CH2CH2], 55.6 (q, OCH3), 55.6 (d, C-2a), 61.8 (t, C-6b), 67.6 (t, C-6a), 68.9 (t, C-6c), 69.1 (b, C-2c), 71.7 (t, PhCH2), 72.8 (d, C-5c), 73.5, 73.6 (2 × t, 2 × PhCH2), 73.9 (d, C-2b), 74.1 (d, C-4c), 74.7 (t, PhCH2), 74.8 (d, C-4b), 74.9 (2 × d, C-5a, C-5b), 74.9, 75.2 (2 × d, 2 × PhCH2), 76.8 (d, C-3a), 78.1 (2 × d, C-3c, C-4a), 83.5 (d, C-3b), 97.5 (d, C-1a), 98.9 (d, C-1c), 100.2 (d, C-1b), 114.3, 118.7, 123.3, 127.2, 127.3, 127.4, 127.5, 127.6, 127.7, 127.8, 127.9, 128.0, 128.0, 128.2, 128.3, 128.3, 128.6, 129.9 (18 × d, 41 × ArC), 131.5 (s, 2 × ArC), 133.1, 133.7 (2 × d, 2 × ArC), 137.7, 137.9, 138.0, 138.1, 138.2, 138.3, 150.9, 155.3 (8 × s, 9 × ArC), 165.3, 171.2, 206.1 (3 × s, 5 × C=O); J C-1a/H-1a = 165 Hz (β), J C-1b/H-1b = 164 Hz (β), J C-1c/H-1c = 175 Hz (α). MS (ESI+) [M + MeCN/NH4 +](major), [M + Na+]: m/z calcd (%) = 1504.6 (100), 1505.6 (96), 1506.6 (50), 1507.6 (19), 1508.6 (5) [M + Na+]; found: 1504.6 (100), 1505.6 (94), 1506.6 (41), 1507.6 (12), 1508.6 (3).
 
    