References and Notes
1a Stereoselective Synthesis of Steroids and Related Compounds, IX. For part VIII, see: Groth U.
Kalogerakis A.
Richter N.
Synlett
2006,
905
1b Lanthanides in Organic Synthesis, part VI. For part V, see: Groth U.
Kesenheimer C.
Neidhöfer J.
Synlett
2006,
12:
1859
2
Koshino H.
Yoshihara T.
Togiya S.
Terada S.
Tsukada S.
Okuno M.
Noguchi A.
Sakamura S.
Ichihara A.
Tennen Yuki Kagobutsu Toronkai Koen Yoshishu
1989,
31:
244
3
Yoshihara T.
Togiya S.
Koshino H.
Sakamura S.
Shimanuki T.
Sato T.
Tajimi A.
Tetrahedron Lett.
1985,
26:
5551
4
Sakamura S. In
Biologically Active Natural Products - Potential Use in Agriculture
Culter HG.
ACS Symposium Series, Vol. 380, Oxford University Press;
New York:
1988.
5a
Oppolzer W.
Cunningham AF.
Tetrahedron Lett.
1986,
27:
5467
5b
Lawler DM.
Simpkins NS.
Tetrahedron Lett.
1988,
29:
1207
5c
Tanimori S.
Ueda T.
Nakayama M.
Biosci. Biotechnol. Biochem.
1994,
58:
1174
5d
Groth U.
Halfbrodt W.
Köhler T.
Kreye P.
Liebigs Ann. Chem.
1994,
9:
885
5e
Deloux L.
Srebnik M.
Tetrahedron Lett.
1996,
37:
2735
6a
Mash EA.
J. Org. Chem.
1987,
52:
4142
6b
Suzuki T.
Sato E.
Matsuda Y.
Tada H.
Koizumi S.
Unno K.
Kametami T.
J. Chem. Soc., Chem. Commun.
1988,
1531
6c
Suzuki T.
Tada H.
Unno K.
J. Chem. Soc., Perkins Trans. 1
1992,
2017
6d
Urban E.
Knühl G.
Helmchen G.
Tetrahedron
1995,
51:
13031
6e For the enantio-selective synthesis of (-)-chokol G, see: Kanada RM.
Tanaguchi T.
Ogasawara K.
Chem. Commun.
1998,
1755
7
Groth U.
Halfbrodt W.
Kalogerakis A.
Köhler T.
Kreye P.
Synlett
2004,
291
For recent reviews on domino reactions, see:
8a
Tietze LF.
J. Heterocycl. Chem.
1990,
27:
47
8b
Tietze LF.
Beifuss U.
Angew. Chem., Int. Ed. Engl.
1993,
32:
131 ; Angew. Chem. 1993, 105, 137
8c
Tietze LF.
Bachmann J.
Wichmann J.
Burkhardt O.
Synthesis
1994,
1185
8d
Tietze LF.
Chem. Ind. (London, U.K.)
1995,
453
8e
Tietze LF.
Chem. Rev.
1996,
96:
115
8f
Tietze LF.
Modi A.
Med. Res. Rev.
2000,
20:
304
8g
Tietze LF.
Haunert F.
Domino Reactions in Organic Synthesis. An Approach to Efficiency, Elegance, Ecological Benefit, Economic Advantage and Preservation of our Resources in Chemical Transformations, In Stimulating Concepts in Chemistry
Shibasaki M.
Stoddart JF.
Vögtle F.
Wiley-VCH;
Weinheim:
2000.
p.39-64
8h
Tietze LF.
Rackelmann N.
Pure Appl. Chem.
2004,
76:
1967
8i
Tietze LF.
Brasche G.
Gericke K.
Domino Reactions in Organic Synthesis
Wiley-VCH;
Weinheim:
2006.
9 For the synthesis of 2-bromo-5-hydroxypent-2-ene 7, see also: Lawler DM.
Simpkins NS.
Tetrahedron Lett.
1988,
29:
1207
10
Gewald K.
Jänsch HJ.
J. Prakt. Chem.
1973,
4:
779
11
(1
S
,2
S
,1′
R
,2′
S
,5′
R
)-2-[1-(3-Benzyloxypropyl)vinyl]-5-oxocyclopentanecarboxylic Acid [5′-Methyl-2′-(1-methyl-1-phenylethyl)]cyclohexyl Ester (
10a)
To a solution of 2.55 g (10.0 mmol) 2-bromopentenylbenzyl ether (7) in 20 mL of abs. Et2O 10.0 mL (20.0 mmol, 2 M solution in Et2O) of t-BuLi was slowly added at -90 °C and stirred then at this temperature for 90 min. The resulting organolithium compound was then added at -80 °C via canula to a suspension of 0.45 g (5.0 mmol) copper(I) cyanide in 10 mL Et2O and stirred then for 2 h until the temperature reached -30 °C and the suspension turned into a bright-green solution. After cooling the solution again to
-80 °C 0.64 mL (5.0 mmol) BF3·OEt2 were added by syringe and stirred for 15 min, whereupon the solution was cooled to -115 °C by an EtOH-dry ice bath. After reaching this temperature a degassed solution of 0.37 g (1.0 mmol) of the chiral ester 9 in 10 mL Et2O was added (very) slowly to the solution of the higher order cuprate 8 and the resulting reaction solution was then stirred for 12 h under warming to r.t. For the work-up 30 mL of a sat. NH4Cl solution were added to the black suspension, stirred for 2-3 min and then filtered over Celite®. After phase separation the aqueous phase was extracted 3 times with 25 mL portions of Et2O. The combined organic phases were dried over MgSO4 and concentrated with a rotary evaporator at 30 °C/13 mbar. The resulting residue was then purified via column chromatography over 200 g silica gel with PE-Et2O = 2:1 as eluent, which gave 0.48 g (0.93 mmol, 93% yield) of the compound 10a (Figure
[2]
). The diastereomeric excess was determined to be >95% by 13C NMR spectroscopy. R
f
= 0.35 (PE-Et2O = 2:1). 1H NMR (200 MHz, CDCl3): δ = 0.85 (d, 3 H, -CH3, J = 6.3 Hz), 1.18 (s, 3 H, -CH3), 1.26 (s, 3 H, -CH3), 1.34-2.39 (m, 18 H, H2-H4, H1′-H6′ and H2′′-H3′′), 2.86-2.88 (m, 1 H, H1), 3.5 (t, 2 H, H4′′, J = 6.2 Hz), 4.52 (s, 2 H, -CH2Ph), 4.76-4.83 (m, 2 H, C=CH2), 7.06-7.50 (m, 10 H, 2 × Ph). 13C NMR (50.3 MHz, CDCl3): δ = 21.71 (C5′-CH3), 26.29 [C2′-C(CH3)2Ph], 26.56 (C3′), 26.83 [C2′-C(CH3)2Ph], 26.90 (C3′′), 27.96 (C5′), 30.96 (C3), 31.25 (C2′), 34.48 (C4′), 38.09 (C4), 39.81 [C2′-C(CH3)2Ph], 41.22 (C2), 45.13 (C6′), 49.90 (C2′), 60.35 (C1), 69.66 (C4′′), 72.91 (OCH2Ph), 76.27 (C1′), 109.38 (C1′′=CH2), 124.90 (Cpara,Ph), 125.42 (Cortho,Ph), 127.48 (Cpara,Bn), 127.55 (Cortho,Bn), 127.92 (Cmeta,Ph), 128.30 (Cmeta,Bn), 138.42 (C1Bn), 148.38 (C1′′), 151.21 (C1Ph), 167.49 (-CO2R), 210.23 (C5). MS (EI, 70eV): m/z (%) = 516.4 (0.1) [M+], 302.2 (52.0) [M+ - C16H22], 119.1 (50.0) [Ph-C(CH3)2
+], 91.1 (100.0) [C7H7
+]. IR (film): 3020, 3005 (C=CH2), 1745 (C=O), 1710 (-CO2R), 1640 (C=C) cm-1. [a]D
20 +4.21 (c 1.13, CHCl3). Anal. Calcd for C34H44O4: C, 79.03; H, 8.58. Found: C, 78.90; H, 8.71.
12a
Parish EJ.
Mody NV.
Hedin PA.
Miles DH.
J. Org. Chem.
1974,
39:
1592
12b
Huang B.-S.
Parish EJ.
Miles DH.
J. Org. Chem.
1974,
39:
2647
12c For a review article about this topic, see: Krapcho AP.
Synthesis
1982,
805
13
Alcarez C.
Groth U.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2480