Synlett 2006(14): 2278-2280  
DOI: 10.1055/s-2006-949645
LETTER
© Georg Thieme Verlag Stuttgart · New York

FeCl3-Catalyzed Coupling of Propargylic Acetates with Alcohols

Zhuang-Ping Zhan*, Hui-Juan Liu
Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China
Fax: +86(592)2185780; e-Mail: zpzhan@xmu.edu.cn;
Further Information

Publication History

Received 10 May 2006
Publication Date:
24 August 2006 (online)

Abstract

A new method for the synthesis of propargylic ethers by FeCl3-catalyzed alcoholysis of propargylic acetates was developed. The reaction was carried out at room temperature in acetonitrile without exclusion of moisture or air. High product yields were obtained with excellent reaction regioselectivity.

    References and Notes

  • 1a Hudrlik PF. Hudrlik AM. In The Chemistry of the Carbon-Carbon Triple Bond   Patai S. John Wiley & Sons; Chichester: 1978.  Chap. 7. p.199 
  • 1b Trost BM. Comprehensive Organic Synthesis   Vol. 4:  Fleming I. Pergamon Press; Oxford: 1991. 
  • Review articles:
  • 2a Nicholas KM. Acc. Chem. Res.  1987,  20:  207 
  • 2b Caffyn AJM. Nicholas KM. In Comprehensive Organometallic Chemistry II   Vol. 12:  Abel EW. Stone FGA. Wilkinson J. Pergamon Press; Oxford: 1995.  Chap. 7.1. p.685 
  • 2c Green JR. Curr. Org. Chem.  2001,  5:  809 
  • 2d Teobald BJ. Tetrahedron  2002,  58:  4133 
  • 2e Kuhn O. Rau D. Mayr H. J. Am. Chem. Soc.  1998,  120:  900 
  • 3 Nicholas KM. Mulvaney M. Bayer M. J. Am. Chem. Soc.  1980,  102:  2508 
  • 4a Nishibayashi Y. Wakiji I. Hidai M. J. Am. Chem. Soc.  2000,  122:  11019 
  • 4b Nishibayashi Y. Wakiji I. Ishii Y. Uemura S. Hidai M. J. Am. Chem. Soc.  2001,  123:  3393 
  • 4c Nishibayashi Y. Yoshikawa M. Inada Y. Hidai M. Uemura S. J. Am. Chem. Soc.  2002,  124:  11846 
  • 4d Nishibayashi Y. Yoshikawa M. Inada Y. Milton MD. Hidai M. Uemura S. Angew. Chem. Int. Ed.  2003,  42:  2681 
  • 4e Milton MD. Inada Y. Nishibayashi Y. Uemura S. Chem. Commun.  2004,  2712 
  • 4f Nishibayashi Y. Milton MD. Inada Y. Yoshikawa M. Wakiji I. Hidai M. Uemura S. Chem. Eur. J.  2005,  11:  1433 
  • 4g Nishibayashi Y. Inada Y. Hidai M. Uemura S. J. Am. Chem. Soc.  2002,  124:  7900 
  • The ruthenium-catalyzed propargylic substitution was reported to run via allenylidene complex intermediates which can be produced only from the propargylic alcohols bearing terminal alkyne group see ref. 4. On the other hand ruthenium-catalyzed substitution of propargylic alcohols bearing an internal alkyne group were also investigated, see:
  • 5a Nishibayashi Y. Inada Y. Yoshikawa M. Hidai M. Uemura S. Angew. Chem. Int. Ed.  2003,  42:  1495 
  • 5b Inada Y. Nishibayashi Y. Hidai M. Uemura S. J. Am. Chem. Soc.  2002,  124:  15172 
  • 6a Luzung MR. Toste FD. J. Am. Chem. Soc.  2003,  125:  15760 
  • 6b Sherry BD. Radosevich AT. Toste FD. J. Am. Chem. Soc.  2003,  125:  6076 
  • 6c Kennedy-Smith JJ. Young LA. Toste FD. Org. Lett.  2004,  6:  1325 
  • 7 Georgy M. Boucard V. Campagne JM. J. Am. Chem. Soc.  2005,  127:  14180 
  • 8a Mahrwald R. Quint S. Tetrahedron  2000,  56:  7463 
  • 8b Bartels A. Mahrwald R. Quint S. Tetrahedron Lett.  1999,  40:  5989 
  • 9 Mahrwald R. Quint S. Scholtis S. Tetrahedron  2002,  58:  9847 
  • Very recently new methodologies employing Brønsted acids as the catalysts have been developed although a higher temperature was needed or the reaction scope is somewhat narrow, see:
  • 10a Sanz R. Martínez A. Álvarez-Gutiérrez JM. Rodríguez F. Eur. J. Org. Chem.  2006,  1383 
  • 10b Liu JH. Muth E. Flörke U. Henkel G. Merz K. Adv. Synth. Catal.  2006,  348:  456 
  • 12a Preparation of propargylic acetates: Bartels A. Mahrwald R. Müller K. Adv. Synth. Catal.  2004,  346:  483 
  • 12b

    Propargylic Ethers; Typical Procedure
    1,3-Diphenylprop-2-ynyl acetate (1a) (0.250 g, 1 mmol), n-BuOH (0.222 g, 3.0 mmol), MeCN (2 mL), and anhyd FeCl3 (0.008 g, 0.05 mmol) were successively added to a 5-mL flask, and then the mixture was stirred magnetically at r.t. for 2.5 h. The solution was concentrated under reduced pressure by an aspirator and then the residue was purified by silica gel column chromatography to afford 3-butoxy-1,3-diphenylprop-1-yne (2a) as a clear colorless oil (0.243 g, 92%).
    The 1H NMR and 13C NMR spectra of known compounds 2b, 2d, 2g, 2h, 2i, 2k, [6b] 2c, 2e, 2f, [8a] 2j, [14] 2l, [4a] 2m, 2o, 2p, [6c] and 2q [5a] are in accordance with those previously reported.
    Compound 2a: Pale yellow oil. IR (film): 3063, 3032, 2229, 1597, 1493, 1452 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.94 (t, 3 H, J = 7.2 Hz), 1.39-1.50 (m, 2 H), 1.62-1.71 (m, 2 H), 3.55-3.62 (m, 1 H), 3.72-3.80 (m, 1 H), 5.39 (s, 1 H), 7.24-7.63 (m, 10 H). 13C NMR (100 MHz, CDCl3): δ = 14.3, 19.8, 32.0, 68.3, 72.0, 87.1, 87.2, 122.3, 127.0, 127.8, 128.0, 128.1, 131.3, 138.5. Anal. Calcd for C19H20O (264.36): C, 86.32; H, 7.63. Found: C, 86.03; H, 7.42.
    Compound 2n: Yellow oil. IR (film): 3387, 1598, 1510, 1452cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.92 (t, 3 H, J = 7.2 Hz), 1.38-1.59 (m, 4 H), 2.27 (td, 2 H, J = 7.2, 2.0 Hz), 4.66-4.76 (br s, 1 H), 4.91 (s, 1 H), 6.72-6.77 (m, 2 H), 7.16-7.25 (m, 3 H), 7.29 (t, 2 H, J = 7.6 Hz), 7.32-7.37 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 13.7, 18.7, 22.1, 31.1, 42.5, 80.8, 85.0, 115.3, 126.6, 127.8, 128.5, 129.1, 135.0, 142.8, 154.2. Anal. Calcd for C19H20O (264.36): C, 86.32; H, 7.63. Found: C, 86.51; H, 7.35.

  • In TiCl4-catalyzed nucleophilic substitution of 1-phenyl-hept-2-ynyl acetate(1b) with phenol the ether was obtained in moderate yield, see:
  • 13a Mahrwald R. Quint S. Tetrahedron  2000,  56:  7463 
  • 13b Bartels A. Mahrwald R. Quint S. Tetrahedron Lett.  1999,  40:  5989 
  • 14 Henseling K.-O. Chem. Ber.  1977,  110:  1027 
11

We suppose that HCl (from the reaction of water with FeCl3) might be the actual catalyst, therefore a control experiment was done but no reaction occurred in a model reaction between 1a and 1-butanol in the presence of 10% HCl.