References and Notes
1a
Marquez VE. In
Advances in Antiviral Drug Design
Vol 2:
De Clercq E.
JAI Press Inc.;
Greenwich, CT:
1996.
p.89-146
1b
Carbohydrate Mimics: Concepts and Methods
Chapleur Y.
Wiley-VCH;
Weinheim:
1998.
1c
Recent Advances in Nucleosides: Chemistry and Chemotherapy
Chu CK.
Elsevier Science;
Amsterdam:
2002.
2a
Agrofolio LA.
Challaud SR.
Acyclic, Carbocyclic and l-Nucleosides
Kluwer Academic Publishers;
Dordrecht, Boston, London:
1998.
Recent reviews:
2b
Crimmins MT.
Tetrahedron
1998,
54:
9229
2c
Ferrero M.
Gotor V.
Chem. Rev.
2000,
100:
4319
2d
Rodriguez JB.
Comin MJ.
Mini-Rev. Med. Chem.
2003,
3:
95
3a
Herdewijn P.
De Clercq E.
Balzarini J.
Vanderhaeghe H.
J. Med. Chem.
1985,
28:
550
3b
Marquez VE.
Lim M.
Med. Res. Rev.
1986,
6:
1
3c
Roberts S.
Biggadike K.
Borthwick AD.
Kirk B. In
Topics in Medicinal Chemistry
Leeming PR.
Royal Society of Chemistry;
London:
1988.
3d
Saunders J.
Cameron JM.
Med. Res. Rev.
1995,
15:
497
For selected recent syntheses and references cited therein, see:
4a
Caamaño O.
Gomez G.
Fernández F.
Garcia MD.
Garcia-Mera X.
De Clercq E.
Synthesis
2004,
2855
4b
Takagi C.
Sukeda M.
Kim H.-S.
Wataya Y.
Yabe S.
Kitade Y.
Matsuda A.
Shuto S.
Org. Biomol. Chem.
2005,
3:
1245
4c
Yang M.
Schneller SW.
Bioorg. Med. Chem.
2005,
13:
877
4d
Santaniello E.
Ciuffreda P.
Alessandrini L.
Synthesis
2005,
509
4e
Cho JH.
Bernard DL.
Sidwell RW.
Kern ER.
Chu CK.
J. Med. Chem.
2006,
49:
1140
4f
Yang M.
Zhou J.
Schneller SW.
Tetrahedron
2006,
62:
1295
4g
Agrofoglio LA.
Curr. Org. Chem.
2006,
10:
333
For selected recent syntheses and references cited therein, see:
5a
Moon HR.
Lee HJ.
Kim KR.
Lee KM.
Lee SK.
Kim HO.
Chun MW.
Jeong LS.
Bioorg. Med. Chem.
2004,
14:
5641
5b
Kim JW.
Choi BG.
Hong JH.
Bull. Korean Chem. Soc.
2004,
25:
1812
5c
Zhu X.-F.
Nydegger F.
Gossauer A.
Helv. Chim. Acta
2004,
87:
2245
5d
Gonzalez-Moa MJ.
Besada P.
Teijeira M.
Teran C.
Uriate E.
Synthesis
2004,
543
5e
Quadrelli P.
Scrocchi R.
Caramella P.
Rescifina A.
Piperno A.
Tetrahedron
2004,
60:
3643
5f
Yang Y.-Y.
Meng W.-D.
Qing F.-L.
Org. Lett.
2004,
6:
4257
5g
Hegedus LS.
Cross J.
J. Org. Chem.
2004,
69:
8492
5h
Wang J.
Jin Y.
Rapp KL.
Bennett M.
Schinazi RF.
Chu CK.
J. Med. Chem.
2005,
48:
3736
5i
Meillon J.-C.
Griffe L.
Storer R.
Gosselin G.
Nucleosides, Nucleotides Nucleic Acids
2005,
24:
695
5j
García MD.
Caamaño G.
Fernández F.
Lopez C.
De Clercq E.
Synthesis
2005,
925
5k
Lee JA.
Moon HR.
Kim HO.
Kim KR.
Lee KM.
Kim BT.
Hwang KJ.
Chun MW.
Jacobson KA.
Jeong LS.
J. Org. Chem.
2005,
70:
5006
5l
Roy A.
Schneller SW.
Keith KA.
Hartline CB.
Kern ER.
Bioorg. Med. Chem.
2005,
13:
4443
5m
Jin YL.
Hong JH.
Bull. Korean Chem. Soc.
2005,
26:
1366
5n
Oh CH.
Hong JH.
Bull. Korean Chem. Soc.
2005,
26:
1520
5o
Kim A.
Hong JH.
Bull. Korean Chem. Soc.
2005,
26:
1767
5p
Jiang MX.-W.
Jin B.
Gage JL.
Priour A.
Savela G.
Miller MJ.
J. Org. Chem.
2006,
71:
4164
5q
Ludek OR.
Krämer T.
Balzarini J.
Meier C.
Synthesis
2006,
1313
5r
García MD.
Caamaño O.
Fernández F.
Abeijon P.
Blanco JM.
Synthesis
2006,
73
5s
Gosselin G.
Griffe L.
Meillon J.-C.
Storer R.
Tetrahedron
2006,
62:
906
For selected recent syntheses and references cited therein, see:
6a
Ishikura M.
Matsumoto K.
Hasunuma M.
Katagiri N.
Heterocycles
2003,
60:
2737
6b
Choi Y.
George C.
Comin MJ.
Barchi JJ.
Kim HS.
Jacobson KA.
Balzarini J.
Mitsuya H.
Boyer PL.
Hughes SH.
Marquez VE.
J. Med. Chem.
2003,
46:
3292
6c
Choi Y.
Moon HR.
Yoshimura Y.
Marquez VE.
Nucleosides, Nucleotides Nucleic Acids
2003,
22:
547
6d
Comin MJ.
Rodriguez JB.
Russ P.
Marquez VE.
Tetrahedron
2003,
59:
295
6e
Kim KW.
Hong JH.
Bull. Korean Chem. Soc.
2004,
25:
668
6f
Ishikura M.
Matsumoto K.
Murakami A.
Heterocycles
2004,
64:
241
6g
Paoli L.
Piccini S.
Rodriguez M.
Sega A.
J. Org. Chem.
2004,
69:
2881
6h
Moon HR.
Kim KR.
Kim BT.
Hwang KJ.
Chun MW.
Jeong LS.
Nucleosides, Nucleotides Nucleic Acids
2005,
24:
709
6i
Tchilibon S.
Joshi BV.
Kim S.-K.
Duong HT.
Gao Z.-G.
Jacobson KA.
J. Med. Chem.
2005,
48:
1745
6j
Joschi BV.
Moon HR.
Fettinger JC.
Marquez VE.
Jacobson KA.
J. Org. Chem.
2005,
70:
439
6k
Comin MJ.
Parrish DA.
Deschamps JR.
Marquez VE.
Org. Lett.
2006,
8:
705
7
Audran G.
Acherar S.
Monti H.
Eur. J. Org. Chem.
2003,
92
8 Nucleoside numbering.
9a
Mitsunobu O.
Synthesis
1981,
1
9b
Jenny TF.
Horlacher J.
Previsani N.
Benner SA.
Helv. Chim. Acta
1992,
75:
1944
9c Review: Hughes DL.
Org. Prep. Proced. Int.
1996,
28:
127
10
Greene TW.
Wuts PGM.
Protective Groups in Organic Synthesis
3rd ed.:
John Wiley and Sons, Inc.;
New York:
1999.
p.150
11
Corey EJ.
Venkateswarlu A.
J. Am. Chem. Soc.
1972,
94:
6190
12a
Sharpless KB.
Michaelson RC.
J. Org. Chem.
1973,
38:
6136
12b
Sharpless KB.
Teranichi AY.
Backväll J.-E.
J. Am. Chem. Soc.
1977,
99:
3120
13
Characterization of Selected New Compounds.
Compound (±)-7: IR (neat): ν = 3321, 1752, 1148, 1053 cm-1. 1H NMR (400 MHz, CDCl3): δ = 4.27 (t, J = 7.8 Hz, 1 H), 3.95 (ABX, J = 11.4, 5.4, 4.9 Hz, 2 H), 3.28 (s, 1 H), 2.79 (br s, OH), 2.38 (dt, J = 9.0, 4.7 Hz, 1 H), 1.98 (s, 3 H), 1.76 (dd, J = 13.4, 7.8 Hz, 1 H), 1.48 (dt, J = 13.4, 8.3 Hz, 1 H), 1.32 (s, 3 H). 13C NMR (400 MHz, CDCl3): δ = 170.7 (C), 72.3 (CH), 65.3 (CH), 65.0 (CH2), 64.0 (C), 41.4 (CH), 33.1 (CH2), 20.7 (CH3), 15.5 (CH3). Anal. Calcd for C9H14O4: C, 58.05; H, 7.58. Found: C, 57.91; H, 7.61.
Compound (±)-1a: white solid; mp 150 °C (dec.). IR (KBr): ν = 3291, 3115, 1667, 1609 cm-1. 1H NMR (400 MHz, CDCl3): δ = 8.42 (s, 1 H), 7.95 (s, 1 H), 6.14 (br s, 1 H), 5.00 (dd, J = 9.5, 2.9 Hz, 1 H), 3.81 and 3.72 (ABX, J = 10.9, 4.5, 3.5 Hz, 2 H), 3.56 (s, 1 H), 3.01 (m, 1 H), 2.61 (dt, J = 14.5, 9.5 Hz, 1 H), 2.49-2.42 (m, 1 H), 2.25 (dt, J = 14.5, 2.9 Hz, 1 H), 1.62 (s, 3 H), 0.93-0.87 (m, 2 H), 0.65-0.59 (m, 2 H). 13C NMR (400 MHz, CDCl3): δ = 155.9 (C), 152.9 (CH), 148.5 (C), 139.6 (CH), 120.0 (C), 69.3 (C), 66.2 (CH), 62.8 (CH2), 55.6 (CH), 44.5 (CH), 34.4 (CH2), 23.7 (CH), 15.4 (CH3), 2 × 7.4 (CH2). Anal. Calcd for C15H19N5O2: C, 59.79; H, 6.36; N, 23.24. Found: C, 59.98; H, 6.33; N, 23.04.
Compound (±)-1b: white solid; mp 170 °C (dec.). IR (KBr): ν = 3278, 3107, 1678, 1600 cm-1. 1H NMR (500 MHz, DMSO-d
6): δ = 8.19 (s, 1 H), 8.13 (s, 1 H), 7.21 (br s, 2 H), 4.91 (d, J = 7.2 Hz, 1 H), 4.77 (t, J = 4.5 Hz, 1 H), 3.79 (s, 1 H), 3.55 (m, 1 H), 3.38 (m, 1 H), 2.27-2.18 (m, 2 H), 1.88 (d, J = 12.6 Hz, 1 H), 1.49 (s, 3 H). 13C NMR (400 MHz, DMSO-d
6): δ = 156.2 (C), 152.5 (CH), 149.6 (C), 139.2 (CH), 118.9 (C), 68.1 (C), 64.1 (CH), 61.6 (CH2), 54.2 (CH), 44.5 (CH), 33.6 (CH2), 15.5 (CH3). Anal. Calcd for C12H15N5O2: C, 55.16; H, 5.79; N, 26.80. Found: C, 54.85; H, 5.84; N, 26.59.
Compound (±)-1c: white solid; mp 190 °C (dec.). IR (KBr): ν = 3305, 3172, 1676, 1615 cm-1. 1H NMR (400 MHz, DMSO-d
6): δ = 7.76 (s, 1 H), 7.28 (br d, J = 3.6 Hz, 1 H), 5.86 (br s, 2 H), 4.78 (t, 4.9 Hz, 1 H), 4.72 (d, J = 7.2 Hz, 1 H), 3.70 (s, 1 H), 3.49 (dt, J = 10.8, 4.9 Hz, 1 H), 3.30 (dt, J = 10.8, 4.9 Hz, 1 H), 3.02 (br s, 1 H), 2.27-2.07 (m, 2 H), 1.86 (d, J = 14.0 Hz, 1 H), 1.47 (s, 3 H), 0.69-0.61 (m, 2 H), 0.60-0.53 (m, 2 H). 13C NMR (400 MHz, DMSO-d
6): δ = 160.3 (C), 156.1 (C), 151.5 (C), 135.3 (CH), 113.6 (C), 68.0 (C), 64.2 (CH), 61.7 (CH2), 53.6 (CH), 44.6 (CH), 33.3 (CH2), 24.0 (CH), 15.6 (CH3), 2 × 6.6 (CH2). Anal. Calcd for C15H20N6O2: C, 56.95; H, 6.37; N, 26.56. Found: C, 57.23; H, 6.39; N, 26.35.
14
General Procedure.
Diisopropyl azodicarboxylate (DIAD, 0.72 mL, 3.6 mmol, 1.5 equiv) was added dropwise to a solution of PPh3 (950 mg, 3.6 mmol, 1.5 equiv) in fresly distilled THF (50 mL) kept under Ar atmosphere at 0 °C. The mixture was stirred for 30 min and then the purine base was added (3.6 mmol, 1.5 equiv). The mixture was stirred for an additional 30 min and then a solution of epoxide 7 (450 mg, 2.4 mmol, 1 equiv) in dry THF (5 mL) was added slowly. The cooling bath was removed and the mixture allowed to warm to r.t. The mixture was stirred for 12 h at r.t.(chloropurine) or 12 h at r.t. then 4 h at 40 °C (adenine, 2-aminochloropurine). The solvent was removed under reduced pressure and the residue was chromatographed on a silica gel column (gradients hexane-EtOAc as eluent). Compounds 8 (66% yield) and 9 (56% yield) were obtained pure as white solids, but 10 was contaminated with inseparable triphenylphosphine oxide.
15 Triphenylphosphine oxide present with 10 was conveniently eliminated during this ammonia deprotective step by triturating the insoluble alcohol 12 with CH2Cl2 before aminocyclopropanation. Using this protocol, pure 12 was obtained in 53% overall yield from 7.