References and Notes
1 IICT communication No. 060622. Part 80 in the series ‘Studies on Novel Synthetic Methodologies’.
2
Rossi R.
Carpita A.
Cossi P.
Tetrahedron
1992,
48:
8801
3
Jarvis AP.
Leibig J.
Holldobler B.
Oldham NJ.
Chem. Commun.
2004,
1196
4a
Katzenellenbogen JA.
Utawanit T.
J. Am. Chem. Soc.
1974,
96:
6153
4b
Kocienski PJ.
Ansell JN.
Ostrow RW.
J. Org. Chem.
1976,
41:
3625
5a
Martischonok V.
Melikyan GG.
Mineif A.
Vostrowsky O.
Bestmann HJ.
Synthesis
1991,
560
5b
De Kimpe N.
Aelterman W.
Tetrahedron
1996,
52:
12815
6
Blum MS.
Chemical Defenses of Arthropods
Academic Press;
New York:
1981.
p.138
7
Fales HM.
Blum MS.
Crewe RM.
Brand JM.
J. Insect Physiol.
1972,
18:
1077
8a
Bestmann HJ.
Attygalle AB.
Glasbrenner J.
Riemer R.
Vostrowsky O.
Angew. Chem., Int. Ed. Engl.
1987,
26:
784
8b
Bestmann HJ.
Attygalle AB.
Glasbrenner J.
Riemer R.
Vostrowsky O.
Constantino MG.
Melikyan G.
Morgan ED.
Liebigs Ann. Chem.
1988,
55
9a Baylis AB, and Hillman MED. inventors; German Patent 2155113.
; Chem. Abstr. 1972, 77, 34174q
9b
Basavaiah D.
Rao AJ.
Satyanarayana T.
Chem. Rev.
2003,
103:
811 ; and references cited therein
10a
Das B.
Banerjee J.
Ravindranath N.
Venkataiah B.
Tetrahedron Lett.
2004,
45:
2425
10b
Das B.
Banerjee J.
Ravindranath N.
Tetrahedron
2004,
60:
8357
11a
Das B.
Banerjee J.
Mahender G.
Majhi A.
Org. Lett.
2004,
6:
3349
11b
Das B.
Mahender G.
Chowdhury N.
Banerjee J.
Synlett
2005,
1000
11c
Das B.
Banerjee J.
Majhi A.
Mahender G.
Tetrahedron Lett.
2004,
45:
9225
12
Das B.
Majhi A.
Banerjee J.
Chowdhury N.
Venkateswarlu K.
Chem. Lett.
2005,
34:
1492
13
Drewes SE.
Emslie ND.
J. Chem. Soc., Perkin Trans. 1
1982,
2089
14a
Jenn T.
Heissler D.
Tetrahedron
1998,
54:
97
14b
Grassi D.
Lippuner V.
Aebi M.
Brunner J.
Vasella A.
J. Am. Chem. Soc.
1997,
119:
10992
14c
Hoffmann HMR.
Rabe J.
J. Org. Chem.
1985,
50:
3849
15
Roush WR.
Brown BB.
J. Org. Chem.
1993,
58:
2151
16a
Das B.
Chowdhury N.
Banerjee J.
Majhi A.
Mahender G.
Chem. Lett.
2006,
35:
358
16b
Mateus CR.
Feltrin MP.
Costa AM.
Cohello F.
Almedia WP.
Tetrahedron
2001,
57:
6901
16c
Basavaiah D.
Hyma RS.
Tetrahedron
1996,
52:
1253
16d
Fernandes L.
Bortoluzzi AJ.
Sa’ MM.
Tetrahedron
2004,
60:
9983
17a
Shadakshari U.
Nayak SK.
Tetrahedron
2001,
57:
4599
17b
Li J.
Qian W.
Zhang Y.
Tetrahedron
2004,
60:
5793
18
Basavaiah D.
Krishnamacharyulu M.
Hyma RS.
Sarma PKS.
Kumaragurabaran N.
J. Org. Chem.
1999,
64:
1197
19
Pachamuthu K.
Vankar YD.
Tetrahedron Lett.
1998,
39:
5439
20
Patra A.
Batra S.
Bhaduri AP.
Synlett
2003,
1611
21
Ranu BC.
Samanta S.
J. Org. Chem.
2003,
68:
7130
22
Yanagisawa A.
Goudu R.
Arai T.
Org. Lett.
2004,
6:
4281
23
General Procedure for the Reduction of Adducts.
To a stirred solution of InCl3 (90 mg, 0.4 mmol) and NaBH4 (168 mg, 4.5 mmol) in dry MeCN (10 mL) was added a solution of Baylis-Hillman adduct 1 (3 mmol) in MeCN (4 mL) at r.t. under nitrogen atmosphere. Stirring was continued and the reaction was monitored by TLC. After completion (3-3.5 h), the reaction mixture was quenched with Et2O (25 mL). After the mixture settled, the supernatant organic layer was decanted and the residual semi-solid mass (inorganic part) was further extracted with Et2O. The combined ether extract was washed with brine, dried (Na2SO4), and concentrated to obtain the crude product, which was purified by column chromatography over silica gel to furnish the pure E-alkenone 2. The spectral (IR, 1H NMR and 13C NMR and MS) data of some repesentative adducts and E-alkenones are given bellow.
Compound 1d: IR (KBr): 3474, 1707, 1678, 1442, 1032 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.61 (1 H, dd, J = 8.0, 2.0 Hz), 7.38-7.17 (3 H, m), 6.12 (1 H, s), 5.94 (1 H, d, J = 3.5 Hz), 5.56 (1 H, s), 3.48 (1 H, d, J = 3.5 Hz), 2.75 (2 H, q, J = 7.0 Hz), 1.11 (3 H, t, J = 7.0 Hz). 13C NMR (75 MHz, CDCl3): δ = 203.1, 150.0, 141.8, 128.5, 127.5, 126.8, 125.0, 72.7, 32.0, 8.2. LSIMS (FAB): m/z = 249, 247 [M+ + Na].
Compound 1g: syn:anti = 70:30. IR (KBr): 3418, 1708, 1682, 1463, 1379 cm-1. 1H NMR (300 MHz, CDCl3): δ
(syn) = 6.10 (1 H, s), 5.91 (1 H, s), 4.31 (1 H, t, J = 5.5 Hz), 2.78-2.65 (3 H, m), 1.77-1.52 (3 H, m), 1.12 (3 H, t, J = 7.0 Hz), 0.90 (3 H, t, J = 7.0 Hz), 0.82 (3 H, d, J = 7.0 Hz); δ (anti) = 6.08 (1 H, s), 5.87 (1 H, s), 4.05 (1 H, t, J = 7.0 Hz), 2.78-2.65 (1 H, merged with the signals for anti), 2.38 (2 H, q, J = 7.0 Hz), 1.49-1.33 (3 H, m), 1.12 (3 H, t, J = 7.0 Hz), 0.90 (3 H, t, J = 7.0 Hz), 0.78 (3 H, d, J = 7.0 Hz). 13C NMR (75 MHz, CDCl3): δ (syn) = 202.8, 149.8, 124.7, 75.1, 39.4, 32.0, 26.8, 13.0, 12.1, 8.1; δ (anti) = 203.7, 149.0, 125.0, 77.4, 39.8, 32.0, 24.9, 16.3, 11.9, 8.1. LSIMS (FAB): m/z = 193 [M+ + Na].
Compound 1h: syn:anti = 60:40, IR (KBr): 3418, 1714, 1675, 1460, 1367 cm-1. 1H NMR (300 MHz, CDCl3): δ
(syn) = 6.12 (1 H, s), 5.97 (1 H, s), 4.32 (1 H, d, J = 5.5 Hz), 2.36 (3 H, s), 2.19 (1 H, d, J = 3.5 Hz), 1.72-1.54 (2 H, m), 1.22-1.16 (1 H, m), 0.99-0.87 (6 H, m); δ (anti) = 6.11 (1 H, s), 5.92 (1 H, s), 4.08 (1 H, d, J = 7.0 Hz), 2.36 (3 H, s), 2.19 (1 H, br s), 1.46-1.32 (2 H, m), 1.18-1.07 (1 H, m), 0.85-0.77 (6 H, m). 13C NMR (75 MHz, CDCl3): δ (syn) = 201.0, 150.0, 126.0, 75.1, 39.2, 30.0, 26.9, 14.0, 12.2; δ (anti) = 201.4, 149.8, 126.5, 77.5, 39.8, 30.0, 25.0, 16.5, 12.0. LSIMS (FAB): m/z = 179 [M+ + Na].
Compound 2b: IR (KBr): 1718, 1672, 1462, 1373, 1219 cm-1. 1H NMR (300 MHz, CDCl3): δ = 6.36 (1 H, d, J = 7.0 Hz), 2.70 (1 H, m), 2.68 (2 H, q, J = 7.0 Hz), 1.78 (3 H, s), 1.10-1.02 (9 H, m) Hz). 13C NMR (75 MHz, CDCl3): δ = 202.5, 148.8, 134.7, 30.2, 28.6, 22.4, 11.6, 8.9. LSI-MS (FAB): m/z = 163 [M+ + Na].
Compound 2d: IR (KBr): 1718, 1675, 1630, 1468, 1438, 1363 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.59 (1 H, s), 7.42 (1 H, m), 7.36-7.27 (3 H, m), 2.85 (2 H, q, J = 7.0 Hz), 1.92 (3 H, s), 1.19 (3 H, t, J = 7.0 Hz). 13C NMR (75 MHz, CDCl3): δ = 202.6, 137.8, 135.6, 134.98, 134.92, 130.5, 129.9, 128.2, 126.6, 30.1, 13.8, 8.7. LSIMS (FAB): m/z = 209 [M+ + 1], 211.
24
Radhakrishna P.
Manjuvani A.
Rajaskhar E.
ARKIVOC
2005,
(iii):
99