Abstract
The solid-state reaction between anilines and phenacyl bromides in the presence of an equimolecular amount of sodium bicarbonate gives N -phenacylanilines. Microwave irradiation of mixtures of these compounds with anilinium bromides at 540 W for 45-60 s provides a mild, general, and environmentally friendly method for the synthesis of 2-arylindoles in 50-56% overall yields. A one-pot variation of the method, involving irradiation of 2:1 mixtures of anilines and phenacyl bromides, was also developed, allowing a simplified experimental procedure and leading to improved yields (52-75%).
Key words
indole synthesis - aniline monoalkylation - solvent-free synthesis - microwave-assisted synthesis
References and Notes 1 Permanent address: Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India
2
Tanaka K.
Solvent-Free Organic Synthesis
Wiley;
New York:
2003.
For reviews of indole-related natural products, see:
3a
Somei M.
Yamada F.
Nat. Prod. Rep.
2003,
30:
216
3b
Hibino S.
Chosi T.
Nat. Prod. Rep.
2002,
19:
148
3c
Hibino S.
Chosi T.
Nat. Prod. Rep.
2001,
18:
66
3d
Lounasmaa M.
Tolvanen A.
Nat. Prod. Rep.
2000,
17:
175
4 For a summary of the applications of indoles, see: Gribble GW.
Five-membered rings with one heteroatom and fused carbocyclic derivatives, In Comprehensive Heterocyclic Chemistry
2nd ed., Vol. 2:
Bird CW.
Katrizky AR.
Rees CW.
Scriven EFV.
Pergamon Press;
Oxford:
1995.
p.207
For recent reviews on indole synthesis, see:
5a
Tois T.
Franzén R.
Koskinen A.
Tetrahedron
2003,
59:
5395
5b
Gribble GW.
J. Chem. Soc., Perkin Trans. 1
2000,
1045
For summaries of these methods, see:
6a
Brown RK.
Indoles
Part 1:
Houlighan WJ.
Wiley-Interscience;
New York:
1972.
Chap. 2.
6b
Sundberg RG.
Pyrroles and their Benzo Derivatives, In Comprehensive Heterocyclic Chemistry
Vol. 4:
Bird CW.
Cheeseman GWH.
Katrizky AR.
Rees CW.
Pergamon Press;
Oxford:
1984.
p.313
6c
Sundberg RJ.
Indoles
Academic Press;
New York:
1996.
7a
Taylor EC.
Katz AH.
Salgado-Zamora H.
McKillop AM.
Tetrahedron Lett.
1985,
26:
5963
7b
Rudisill DE.
Stille JK.
J. Org. Chem.
1989,
54:
5856
7c
Ezquerra J.
Pedregal C.
Lamas C.
Barluenga J.
Pérez M.
García-Martín MA.
González JM.
J. Org. Chem.
1996,
61:
5804
7d
Kondo Y.
Kojima S.
Sakamoto T.
Heterocycles
1996,
61:
5804
7e
Kondo Y.
Kojima S.
Sakamoto T.
J. Org. Chem.
1997,
62:
6507
7f
Dai W.-M.
Guo D.-S.
Sun L.-P.
Tetrahedron Lett.
2001,
42:
5275
For reviews of palladium-catalyzed cyclization reactions, see:
8a
Larock RC.
J. Organomet. Chem.
1999,
576:
111
8b
Li JJ.
Gribble GW.
Palladium in Heterocyclic Chemistry. A Guide for the Synthetic Chemist
Pergamon Press;
Oxford:
2000.
8c
Cacchi S.
Fabrizi G.
Parisi LM.
Heterocycles
2002,
58:
667
9a
Cacchi S.
Carnicelli V.
Marinelli F.
J. Organomet. Chem.
1994,
475:
289
9b
Yu MS.
Leon LL.
McGuire MA.
Botha G.
Tetrahedron Lett.
1998,
39:
9347
9c
Larock RC.
Yum EK.
Refvik MD.
J. Org. Chem.
1998,
63:
7652
9d
Yasuhara A.
Kanamori Y.
Kaneko M.
Numata A.
Kondo Y.
Sakamoto T.
J. Chem. Soc., Perkin Trans. 1
1999,
529 ; and references therein from the same group
9e
Esseveldt BCJ.
Delft FL.
Gelder R.
Rutjes FPJT.
Org. Lett.
2003,
5:
1717
9f
Kamijo S.
Yamamoto Y.
J. Org. Chem.
2003,
68:
4764
10
Hiroya K.
Itoh S.
Sakamoto T.
J. Org. Chem.
2004,
69:
1126
11
Arcadi A.
Bianchi G.
Marinelli F.
Synthesis
2004,
610
12a
Kondo Y.
Kojima S.
Sakamoto T.
J. Org. Chem.
1997,
62:
6507 ; and references therein from the same group
12b
Koradin C.
Dohle W.
Rodriguez AL.
Schmid B.
Knochel P.
Tetrahedron
2003,
59:
1571 ; and references therein from the same group
13a
Yasuhara A.
Kanimori Y.
Kaneko M.
Numata A.
Kondo Y.
Sakamoto T.
J. Chem. Soc., Perkin Trans. 1
1999,
529
13b
Botta M.
Summa V.
Corelli F.
Pietro GD.
Lombardi P.
Tetrahedron: Asymmetry
1996,
7:
1263
13c
Fagnola MC.
Candidiani I.
Visentin G.
Cabri W.
Zarini F.
Mongelli N.
Bedeschi A.
Tetrahedron Lett.
1997,
38:
2307
14
Cacchi S.
Fabrizi G.
Parisi LM.
Org. Lett.
2003,
5:
2919
15a
Sakamoto T.
Kondo Y.
Iwashita S.
Nagano T.
Yamanaka H.
Chem. Pharm. Bull.
1988,
36:
1305
15b
Fagnola MC.
Candiani I.
Visentin G.
Cabri W.
Zarini F.
Mongelli N.
Bedeschi A.
Tetrahedron Lett.
1997,
38:
2307
15c
Zhang HC.
Ye H.
Moretto AF.
Brumfield KK.
Maryanoff BE.
Org. Lett.
2000,
2:
89
15d
Wu TYH.
Ding S.
Gray NS.
Schultz PG.
Org. Lett.
2001,
3:
3827
15e
Barluenga J.
Tricado M.
Rubio E.
González JM.
Angew. Chem. Int. Ed.
2003,
42:
2406
15f
Huang Q.
Larock RC.
J. Org. Chem.
2003,
68:
7342
15g
Amjad M.
Knight DW.
Tetrahedron Lett.
2004,
45:
539
15h
Hong KB.
Lee CW.
Yum EK.
Tetrahedron Lett.
2004,
45:
693
16a
Gassman PG.
Van Bergen TJ.
Gilbert DP.
Cue BW.
J. Am. Chem. Soc.
1974,
96:
5495
16b
Gassman PG.
Van Bergen TJ.
Org. Synth. Coll. Vol. 6
Wiley;
New York:
1988.
p.601
17 For a review, see: Dalpozzo R.
Bartoli G.
Curr. Org. Chem.
2005,
9:
163
18
Sundberg RJ.
The Chemistry of Indoles
Academic Press;
New York:
1970.
19a For an example using protic acids, see: Black DSC.
Bowyer MC.
Bowyer PK.
Ivory AJ.
Kim M.
Kumar N.
McConnell DB.
Popiolek M.
Aust. J. Chem.
1994,
47:
1741
19b For an example using Lewis acids or acidic resins, see: Bashford KE.
Cooper AL.
Kane PD.
Moody CJ.
Muthusamy S.
Swann E.
J. Chem. Soc., Perkin Trans. 1
2002,
1672
20
Pchalek K.
Jones AW.
Wekking MMT.
Black DSC.
Tetrahedron
2005,
61:
77
21a
Nordlander JE.
Catalane DB.
Kotian KD.
Stevens RM.
Haky JE.
J. Org. Chem.
1981,
46:
778
21b
Sundberg RJ.
Laurino JP.
J. Org. Chem.
1984,
49:
249
22
Buu-Hoi NP.
Saint-Duf G.
Deschamps R.
Bigot P.
Hieu H.-T.
J. Chem. Soc. C
1971,
2606
23a
Black DSC.
Gatehouse BMKC.
Théobald F.
Wong LCH.
Aust. J. Chem.
1980,
33:
343
23b
Black DSC.
Kumar N.
Wong LCH.
Aust. J. Chem.
1986,
39:
15
For representative reviews and books on microwave-assisted organic synthesis, see:
24a
Caddick S.
Tetrahedron
1995,
38:
10403
24b
de la Hoz A.
Díaz-Ortiz A.
Moreno A.
Langa F.
Eur. J. Org. Chem.
2000,
22:
3659
24c
Perreux L.
Loupy A.
Tetrahedron
2001,
57:
9199
24d
Lidstrom P.
Tierney J.
Wathey B.
Westman J.
Tetrahedron
2001,
57:
9225
24e
Santagada V.
Perissutti E.
Caliendo G.
Curr. Med. Chem.
2002,
9:
1251
24f
Microwaves in Organic Synthesis
Loupy A.
Wiley-VCH;
Weinheim:
2002.
24g
Varma RS.
Advances in Green Chemistry: Chemical Synthesis Using Microwave Irradiation
AstraZeneca Research Foundation;
India:
2002.
24h
Hayes BL.
Aldrichimica Acta
2004,
37:
66
24i
Kappe CO.
Angew. Chem. Int. Ed.
2004,
43:
6250
24j
Tierney J.
Lindstrom P.
Microwave Assisted Organic Synthesis
Blackwell;
London:
2005.
25a
Pérez R.
Pérez E.
Suárez M.
González L.
Loupy A.
Jimeno ML.
Ochoa C.
Org. Prep. Proced. Int.
1997,
29:
671
25b
Limousin C.
Cleophax J.
Loupy A.
Petit A.
Tetrahedron
1998,
54:
13567
25c
Dandia A.
Arya K.
Khaturia S.
Yadav P.
ARKIVOC
2005,
(xii):
80
26a
General Procedure for the Two-Step Method.N-Alkylation : 2 mmol of the suitable phenacyl bromide (prepared according ref. 26b) was slowly added to a mixture of 2 mmol of the suitable arylamine and 300 mg of NaHCO3 (the order of addition of the reagents is not normally of consequence, but it is important to use the method described here in the case of the anisidine derivatives, which otherwise lead to dialkylation products). The reaction mixture was stirred at r.t. with occasional cooling in tap water, soon becoming semisolid and finally solid. This solid was kept at r.t. for 3 h, when completion of the reaction was verified by TLC. Then, H2 O was added to the mixture and the separated solid was filtered, washed with H2 O, and dried, giving materials with sufficient purity for the next step. If desired, the N -phenacylanilines can be recrystallized from EtOH.
Cyclization : a mixture of 1 mmol of the suitable N -phen-acylaniline and 1.5 mmol of the corresponding anilinium hydrobromide with 3-4 drops of DMF was irradiated in a domestic microwave oven at 540 W for the time period specified in Table
[1 ]
. After completion of the reaction the mixture was loaded onto a silica gel column and pure 2-arylindoles were obtained by chromatography, eluting with a gradient starting from 9:1 PE-EtOAc. Alternatively, the mixture could also be extracted with EtOAc, washed with H2 O, dried and evaporated before chromatography. All indole derivatives were previously known, and showed the expected 1 H NMR and 13 C NMR spectra, and melting points very similar to those previously described (Table
[1 ]
).
26b
Cowper RM.
Davidson LH.
Org. Synth. Coll. Vol. 2
Wiley;
New York:
1962.
p.480
27a
Bischler A.
Brion H.
Ber. Dtsch. Chem. Ges.
1892,
25:
2860
27b
Bischler A.
Firemann P.
Ber. Dtsch. Chem. Ges.
1893,
26:
1336
28
Blades CE.
Wilds AL.
J. Org. Chem.
1956,
21:
1013
29
Smith AB.
Visnick M.
Haseltine JN.
Sprengeler PA.
Tetrahedron
1986,
42:
2957
30
Hudkins RL.
Diebold JL.
Marsh FD.
J. Org. Chem.
1995,
60:
6218
31
Junjappa H.
Synthesis
1975,
798
32
Brown F.
Mann FG.
J. Chem. Soc.
1948,
847
33
Crowther AF.
Mann FG.
Purdie D.
J. Chem. Soc.
1943,
58
34 Macleod C., McKiernan G. J., Guthrie E. J., Farrugia L. J., Hamprecht D. W., Macritchie J., Hartley R. C.; J. Org. Chem .; 2003 , 68 : 387
35
Black DSC.
Kumar N.
McCornell DB.
Tetrahedron
2001,
57:
2203
36
General Procedure for the One-Pot Synthesis of 2-Arylindoles from Phenacyl Bromides and Anilines under Microwave Irradiation.
Phenacyl bromide (1 mmol) was stirred with aniline (2 mmol) at r.t. without any base to neutralize the liberated HBr. The mixture was kept at r.t. with occasional stirring for 3 h. To the solid mixture, containing N -phenacyl aniline and anilinium hydrobromide, was added 3-4 drops of DMF and the mixture was irradiated in a microwave oven at 600 W for 1 min. After completion of the reaction, the mixture was treated as described for the two-step method to give the pure 2-arylindoles.