Subscribe to RSS
DOI: 10.1055/s-2005-918943
A Short and Efficient Stereoselective Synthesis of the Octalactin Lactone Using Enantioselective Crotyltitanations and a Cross-Metathesis Reaction
Publication History
Publication Date:
12 October 2005 (online)

Abstract
The octalactin lactone was synthesized from the commercially available methyl 3-butenoate using enantioselective crotyltitanations to control the stereogenic centers at C3, C4, C7 and C8.
Key words
crotyltitanations - cross-metathesis - octalactin
- 1
Tapiolas DM.Roman M.Fenical W.Stout TJ.Clardy J. J. Am. Chem. Soc. 1991, 113: 4682 -
2a
Connolly JD.Okrie DA.De Wit LD.Taylor DAH. J. Chem. Soc., Chem. Commun. 1976, 909 -
2b
Taylor DAH. J. Chem. Res., Synop. 1982, 55 -
2c
Ackland MJ.Hanson JR.Hitchcock PB.Ratcliffe AH. J. Chem. Soc., Perkin Trans. 1 1985, 843 -
2d
Fang X.Anderson JE.Qui X.Kozlowski JF.Chang C.McLaughlin JL. Tetrahedron 1993, 49: 1563 -
2e
Shiina I.Fukuda Y.Ishii T.Fujisawa H.Mukaiyama T. Chem. Lett. 1998, 831 -
2f A revised structure has been proposed:
Mukai C.Yamashita H.Hirai S.Hanaoka M.McLaughlin JL. Chem. Pharm. Bull. 1999, 47: 131 -
2g
Shiina I.Fujisawa H.Ishii T.Fukuda Y. Heterocycles 2000, 52: 1105 - 3
Buszek KR.Sato N.Jeong Y. J. Am. Chem. Soc. 1994, 116: 5511 - 4 Total synthesis of (+)-ent-octalactin A:
McWilliams JC.Clardy J. J. Am. Chem. Soc. 1994, 116: 8378 - 5
Perchellet J.-P.Perchellet EM.Newell SW.Freeman JA.Ladesich JB.Jeong Y.Sato N.Buszek KR. Anticancer Res. 1998, 18: 97 - Formal synthesis:
-
6a
Buszek KR.Jeong Y. Tetrahedron Lett. 1995, 36: 7189 -
6b
Andrus MB.Argade AB. Tetrahedron Lett. 1996, 37: 5049 -
6c
Kodama M.Matsushita M.Terada Y.Takeuchi A.Yoshio S.Fukuyama Y. Chem. Lett. 1997, 117 -
6d
Inoue S.Iwabuchi Y.Irie H.Hatakeyama S. Synlett 1998, 735 -
6e
Garcia J.Bach J. Tetrahedron Lett. 1998, 39: 6761 - Partial syntheses:
-
6f
Bach J.Vilarrasa J. Tetrahedron Lett. 1995, 36: 3425 -
6g
Hulme AN.Howells GE. Tetrahedron Lett. 1997, 38: 8245 -
6h
Shimoma F.Kusaka H.Wada K.Azami H.Yasunami M.Suzuki T.Hagiwara H.Ando M. J. Org. Chem. 1998, 63: 920 -
6i
Harrison JR.Holmes AB.Collins I. Synlett 1999, 972 -
6j
Anderson EA.Holmes AB.Collins I. Tetrahedron Lett. 2000, 41: 117 -
6k
Bluet G.Campagne JM. Synlett 2000, 221 - 7
Buszek KR.Sato N.Jeong Y. Tetrahedron Lett. 2002, 43: 181 - 8
O’Sullivan PT.Burh W.Fuhry MAM.Harrison JR.Davies JE.Feeder N.Marshall DR.Burton JW.Holmes AB. J. Am. Chem. Soc. 2004, 126: 2194 -
9a
Shiina I.Oshiumi H.Hashizume M.Yamai Y.-S.Ibuka R. Tetrahedron Lett. 2004, 45: 543 -
9b
Shiina I.Ikuba R.Kubota M. Tetrahedron Lett. 2002, 43: 7535 -
15a
Shiina I.Ikuba R.Kubota M. Chem. Lett. 2002, 286 -
15b
Shiina I.Kubota M.Oshiumi H.Hashizume M.
J. Org. Chem. 2004, 65: 1822
References
The yield was calculated for the two steps from (R,R)-I.
11Spectroscopic data of compound 3: [α]D 25 +25.2 (c 1.08, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 5.72 (ddd, J = 7.9, 10.9, 16.5 Hz, 1 H), 5.02 (m, 2 H), 3.75 (m, 1 H), 3.62 (s, 3 H), 2.69 (s, 1 H), 2.39 (m, 2 H), 2.22 (m, 1 H), 1.00 (d, J = 6.7 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 173.2 (s), 139.4 (d), 115.8 (t), 71.0 (d), 51.5 (q), 43.2 (d), 38.6 (t), 15.6 (q). IR (neat): ν = 3450, 2940, 1740 cm-1. MS (EI, 70 eV): m/z (%) = 158 (absent) [M], 127 (10), 103 (100), 83 (14), 71 (80), 61 (35), 56 (60).
12The diastereoselectivity of the reaction was determined by 1H NMR spectroscopy and the enantioselectivity by GC/MS spectrometry (HP 6890 Series Injector GC system coupled with HP 5973 Mass Selective Detector) of the corresponding Mosher esters.
13Spectroscopic data of compound 4: [α]D 25 +18.9 (c 0.45, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 9.46 (d, J = 7.9 Hz, 1 H), 6.86 (dd, J = 7.9, 15.8 Hz, 1 H), 6.08 (ddd, J = 1.1, 7.9, 15.8 Hz, 1 H), 3.99 (m, 1 H), 3.64 (s, 3 H), 3.30 (d, J = 3.5 Hz, 1 H), 2.50 (m, 1 H), 2.41 (m, 2 H), 1.11 (d, J = 7.1 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 194.0 (d), 173.0 (s), 159.0 (d), 133.3 (d), 70.7 (d), 51.9 (q), 42.2 (d), 39.0 (t), 15.7 (q). IR (neat): ν = 3500, 2950, 1750 cm-1. MS (EI, 70 eV): m/z (%) = 186 (absent) [M], 155 (2), 109 (5), 103 (25), 95 (16), 84 (100), 42 (71), 61 (15), 55 (38).
14The limiting step is the saponification.
16Spectroscopic data of compound 10: [α]D 25 -54.6 (c 1.59, CHCl3).17 1H NMR (300 MHz, CDCl3): δ = 9.65 (s, 1 H), 4.60 (ddd, J = 3.6, 7.1, 15.0 Hz, 1 H), 3.92 (d, J = 6.8 Hz, 1 H), 2.70-2.68 (m, 3 H), 1.92 (m, 1 H), 1.75-1.50 (m, 4 H), 1.08 (d, J = 7.1 Hz, 3 H), 0.99 (d, J = 7.1 Hz, 3 H), 0.85 (s, 9 H), 0.15 (s, 3 H), 0.00 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 202.4 (d), 170.8 (s), 76.8 (d), 72.7 (d), 50.6 (d), 39.7 (t), 38.5 (d), 31.4 (t), 25.8 (3 q), 25.7 (q), 23.0 (t), 18.0 (s), 10.4 (q), -4.2 (q), -5.1 (q). IR (neat): ν = 2955, 2928, 2855, 1721, 1461, 1253, 1180, 1086, 1036 cm-1. MS (EI, 70 eV): m/z (%) = 271 (12), 185 (18), 171 (23), 157 (13), 145 (46), 119 (13), 115 (26), 109 (29), 101 (61), 93 (14), 75 (100), 73 (53), 59 (19), 55 (23).
17In order to avoid the epimerization of the stereogenic center in the α-position of the aldehyde, and due to the instability of 10, τηε [α]D was measured on the product obtained after extraction.