Abstract
The reductive opening of 2-methoxyethylidene acetals of vicinal diols in uridine and
1,4-anhydro-d -ribitol in the presence of TiCl4 and Et3 SiH was investigated. The 3′-O -(2-methoxyethyl) ether of uridine and the 2′-O -(2-methoxyethyl) ether of 1,4-anhydro-d -ribitol were isolated and characterized. The results were rationalized based on coordination
effects involving proximal substituents.
Key words
acetal - reductive opening - nucleoside - antisense
References
<A NAME="RS05905ST-1A">1a </A>
Beigelman L.
Harberli P.
Sweedler D.
Karpeisky A.
Tetrahedron
2000,
56:
1047
<A NAME="RS05905ST-1B">1b </A>
Ross BS.
Springer RH.
Tortorici Z.
Dimock S.
Nucleosides Nucleotides
1997,
16:
1641
<A NAME="RS05905ST-1C">1c </A>
Chanteloup L.
Thuong TN.
Tetrahedron Lett.
1994,
35:
877
<A NAME="RS05905ST-1D">1d </A>
Roy SK.
Tang J.-Y.
Org. Process Res. Dev.
2000,
4:
170
<A NAME="RS05905ST-1E">1e </A>
Von Matt P.
Lochmann T.
Kesselring R.
Altmann K.-H.
Tetrahedron
1999,
40:
1873
<A NAME="RS05905ST-1F">1f </A>
Beigelmann L,
Sweedler D,
Haeberli P, and
Karpeisky A. inventors; US Patent 5,962,275.
<A NAME="RS05905ST-2A">2a </A>
Martin P.
Helv. Chim. Acta
1995,
78:
486
<A NAME="RS05905ST-2B">2b </A>
Legorburu U.
Reese CB.
Song Q.
Tetrahedron
1999,
55:
5635
<A NAME="RS05905ST-2C">2c </A>
Altmann K.-H.
Bévierre M.-O.
De Mesmaeker A.
Moser HE.
Bioorg. Med. Chem. Lett.
1995,
5:
431
<A NAME="RS05905ST-2D">2d </A>
Cook PD,
Springer RH,
Sprankle KG, and
Ross BS. inventors; US Patent 5,861,493.
<A NAME="RS05905ST-3A">3a </A>
Uhlmann E.
Peyman A.
Chem. Rev.
1990,
90:
544
<A NAME="RS05905ST-3B">3b </A>
Irgolic KJ. In
Houben-Weyl
Vol. E12b:
Klamann D.
Thieme;
Stuttgart:
1990.
4th ed..
p.150
<A NAME="RS05905ST-4">4 </A>
Zamecnik PC.
Stephenson ML.
Proc. Natl. Acad. Sci. U.S.A.
1978,
75:
280
<A NAME="RS05905ST-5">5 </A>
Kurreck J.
Eur. J. Biochem.
2003,
270:
1628
<A NAME="RS05905ST-6A">6a </A>
Antisense Drug Technology
Crooke ST.
Dekker;
New York:
2001.
<A NAME="RS05905ST-6B">6b </A>
Manoharan M.
Biochim. Biophys. Acta
1999,
1489:
117
<A NAME="RS05905ST-7">7 </A>
Martin P.
Helv. Chim. Acta
2003,
86:
204
<A NAME="RS05905ST-8">8 </A>
Chow S.
Wen K.
Sanghvi SY.
Theodorakis EA.
Nucleosides, Nucleotides Nucleic Acids
2003,
22:
583
<A NAME="RS05905ST-9A">9a </A>
Sproat BS.
Beijer B.
Groti M.
Ryder U.
Morand KL.
Lamond AI.
J. Chem. Soc., Perkin Trans. 1
1994,
419
<A NAME="RS05905ST-9B">9b </A>
Hanessian S.
Lavallée P.
Can. J. Chem.
1975,
53:
2975
For examples of endo - and exo -acetals, see:
<A NAME="RS05905ST-10A">10a </A>
Venkatesalu B.
Lin LG.
Cherian XM.
Czarnik AW.
Carbohydr. Res.
1987,
170:
124
<A NAME="RS05905ST-10B">10b </A> See also:
Grindley TB.
Szarek WA.
Carbohydr. Res.
1972,
25:
187
<A NAME="RS05905ST-10C">10c </A>
Typical Procedure 10 → 11 → 12 . Compound 11 : to a mixture of 10 (4.5 g, 9.32 mmol) and PTSA (90 mg, 0.466 mmol) in toluene (65 mL) was added methoxyacetaldehyde
dimethyl acetal (1.95 mL, 27.35 mmol). The mixture was stirred at 125 °C for 1 h,
cooled to r.t. and concentrated. The crude product was purified by flash chromatography
(5:1, EtOAc-hexane) to afford 11 (3.7 g, 6.87 mmol, 75%) as a white solid. R
f
= 0.46 (5:1, EtOAc-hexane); mp 60-63 °C; [α]D +4.9 (c 0.45, MeOH). Compound 12 : to 11 (50 mg, 0.092 mmol) in CH2 Cl2 (1.5 mL) at -78 °C was added TiCl4 (0.92 mL, 0.92 mmol, 1 M CH2 Cl2 ). The mixture was stirred at this temperature for 10 min, followed by the addition
of Et3 SiH (0.6 mL, 3.68 mmol). The mixture was then slowly brought to r.t. over a period
of 18 h. Then, H2 O (1.5 mL) and CH2 Cl2 (1.5 mL) were added and the mixture and stirred for 10 min. The two phases were separated,
the aqueous phase was extracted with CH2 Cl2 (2 × 2 mL) and the organic phase was washed with NaCl (5 mL) and dried over Na2 SO4 . The organic layer was then concentrated and purified by flash chromatography (5:1,
EtOAc-hexane) to afford 12 as a colorless oil (38 mg, 0.070 mmol, 76%). R
f
= 0.19 (5:1, EtOAc-hexane); [α]D +0.78 (c 7.00, MeOH).
<A NAME="RS05905ST-11">11 </A>
We have also used a combination of ZnCl2 /L-Selectride, BF3 ·OEt2 /Et3 SiH, however, no opening of the acetal was observed under these conditions.
<A NAME="RS05905ST-12">12 </A>
Decomposition was observed when MeCN and nitromethane were used as solvent.
<A NAME="RS05905ST-13">13 </A>
Hanessian S.
Machaalani R.
Tetrahedron Lett.
2003,
44:
8321
For example, see:
<A NAME="RS05905ST-14A">14a </A>
Guindon Y.
Ogilvie WW.
Bordeleau J.
Li CW.
Durkin K.
Gorys V.
Juteau H.
Lemieux R.
Liotta D.
Simoneau B.
Yoakim C.
J. Am. Chem. Soc.
2003,
125:
428
<A NAME="RS05905ST-14B">14b </A>
Corcoran CR.
Tetrahedron Lett.
1990,
31:
2101
<A NAME="RS05905ST-14C">14c </A>
Mori A.
Fujiwara J.
Maruoka K.
Yamamoto H.
J. Organomet. Chem.
1985,
285:
83
<A NAME="RS05905ST-14D">14d </A>
Liptak A.
Fügedi P.
Nanasi P.
Carbohydr. Res.
1978,
65:
209