Dtsch Med Wochenschr 2005; 130(15): 969-973
DOI: 10.1055/s-2005-866773
Übersichten
Kardiologie
© Georg Thieme Verlag Stuttgart · New York

Wenn die Myofilamente sensibel werden

Ca2+ -Sensitizer zur Therapie der HerzinsuffizienzSensitization of the myofilaments and its implication for treatment in human heart failureR. H. G. Schwinger1 , K. Brixius1
  • 1Klinik III für Innere Medizin, Labor für Herzmuskelphysiologie und Molekulare Kardiologie, Universität Köln
Further Information

Publication History

eingereicht: 28.5.2004

akzeptiert: 3.2.2005

Publication Date:
05 April 2005 (online)

Die Herzinsuffizienz wird definiert als ein akutes oder chronisches Unvermögen des Herzens, bei Belastung oder/und in Ruhe dem Organismus das für den Stoffwechsel erforderliche Blutvolumen zur Verfügung zu stellen. Man unterscheidet systolische und diastolische Herzinsuffizienz. Die systolische Herzleistungsschwäche ist in der Kontraktionsphase gelegen: Das Herz ist nicht in der Lage, sich ausreichend zusammenzuziehen und Kraft zu entwickeln, um genügend Blut auszuwerfen und den Kreislauf auf den Weg zu bringen (z. B.: nach Herzinfarkt, Myokarditis oder bei pathologischen Veränderungen der Herzklappen). Bei der diastolischen Herzinsuffizienz liegt zunächst überhaupt keine Kontraktionsschwäche des Herzens vor, sondern das Herzmuskelgewebe kann in der Diastole nicht ausreichend erschlaffen.

Da die Anzahl der Patienten mit Herzinsuffizienz, die auf eine Herztransplantation warten, ansteigt [25], sind Therapien notwendig, die es diesen Patienten ermöglichen, die Zeit bis zur Herztransplantation zu überbrücken. Die pharmakologisch-therapeutische Unterstützung dieser Patienten ist jedoch limitiert. Ein wesentlicher Nachteil von positiv inotropen Substanzen, die über eine Erhöhung der intrazellulären Ca2+-Konzentration die Kontraktionskraft steigern, besteht darin, dass sie möglicherweise durch die Erhöhung der intrazellulären Ca2+-Konzentration eine Ca2+-Überladung der Zelle verursachen, die mit der Bildung von Nekrosen (Anstieg der Apoptoserate), Tachykardien und Arrhythmien einhergeht. Hinzu kommt, dass eine Kontraktionskraftsteigerung durch Erhöhung der intrazellulären Ca2+-Konzentration mit einer Erhöhung des kardialen Sauerstoffverbrauchs aufgrund der Zunahme des Energiebedarfs verbunden ist [20] - und dies in einer Situation, in der sich das Herz bereits schon in einem Sauerstoffversorgungsengpass befindet.

Literatur

  • 1 Andrew P. Diastolic heart failure demystified.  Chest. 2003;  124 744-753
  • 2 Beuckelmann D J, Nabauer M, Erdmann E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure.  Circulation. 1992;  85 1046-1055
  • 3 Boknik P, Neumann J, Kaspareit G. et al . Mechanisms of the contractile effects of levosimendan in the mammalian heart.  J Pharmacol Exp Ther. 1997;  280 277-283
  • 4 Brixius K, Pietsch M, Hoischen S, Muller-Ehmsen J, Schwinger R HG. Effect of inotropic interventions on contraction and Ca2+ transients in the human heart.  J Appl Physiol. 1997;  83 652-660
  • 5 Brixius K, Reicke S, Schwinger R HG. Beneficial effects of the Ca(2+) sensitizer levosimendan in human myocardium.  Am J Physiol. 2002;  282 H131-H137
  • 6 Cleland J G, Ghosh J, Freemantle N. et al . Clinical trials update and cumulative meta-analyses from the American College of Cardiology: WATCH, SCD-HeFT, DINAMIT, CASINO, INSPIRE, STRATUS-US, RIO-Lipids and cardiac resynchronisation therapy in heart failure.  Eur J Heart Fail. 2004;  6 501-508
  • 7 Du T oit EF, Muller C A, McCarthy J, Opie L H. Levosimendan: effects of a calcium sensitizer on function and arrhythmias and cyclic nucleotide levels during ischemia/reperfusion in the Langendorff-perfused guinea pig heart.  J Pharmacol Exp Ther. 1999;  290 505-514
  • 8 Edes I, Kiss E, Kitada Y. et al . Effects of Levosimendan, a cardiotonic agent targeted to troponin C, on cardiac function and on phosphorylation and Ca2+ sensitivity of cardiac myofibrils and sarcoplasmic reticulum in guinea pig heart.  Circ Res. 1995;  77 107-113
  • 9 Endoh M. Mechanism of action of Ca2+ sensitizers-update 2001.  Cardiovasc Drugs Ther. 2001;  15 397-403
  • 10 Felker G M, Benza R L, Chandler A B. et al . Heart failure etiology and response to milrinone in decompensated heart failure: results from the OPTIME-CHF study.  J Am Coll Cardiol. 2003;  41 997-1003
  • 11 Follath F. Levosimendan in patients with low-output heart failure: lessons from the LIDO trial.  Ital Heart J. 2003;  4 (Suppl 2) 34S-38S
  • 12 Follath F, Cleland J G, Just H. et al . Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double-blind trial.  Lancet. 2002;  360 196-202
  • 13 Gruhn N, Nielsen-Kudsk J E, Theilgaard S. et al . Coronary vasorelaxant effect of levosimendan, a new inodilator with calcium-sensitizing properties.  J Cardiovasc Pharmacol. 1998;  31 741-749
  • 14 Hagemeijer F, Brand H J, van Mechelen R. Hemodynamic effects of pimobendan given orally in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy.  Am J Cardiol. 1989;  63 571-576
  • 15 Haikala H, Kaivola J, Nissinen E, Wall P, Levijoki J, Linden I B. Cardiac troponin C as a target protein for a novel calcium sensitizing drug, levosimendan.  J Mol Cell Cardiol. 1995;  27 1859-1866
  • 16 Hasenfuss G, Pieske B, Castell M, Kretschmann B, Maier L S, Just H. Influence of the novel inotropic agent levosimendan on isometric tension and calcium cycling in failing human myocardium.  Circulation. 1998;  98 2141-2147
  • 17 Hiro J, Hiro T, Reid C L, Ebrahimi R, Matsuzaki M, Gardin J M. Safety and results of dobutamine stress echocardiography in women versus men and in patients older and younger than 75 years of age.  Am J Cardiol. 1997;  80 1014-1020
  • 18 Hohnloser S H, Zehender M, Geibel A, Meinertz T, Just H. Electrophysiologic effects of enoximone in patients with congestive heart failure.  J Cardiovasc Pharmacol. 1989;  14 (Suppl 1) S29-S32
  • 19 Holbrook M, Coker S J. Comparison of the effects of isobutylmethylxanthine and milrinone on ischaemia-induced arrhythmias and platelet aggregation in anaesthetized rabbits.  Br J Pharmacol. 1989;  98 318-324
  • 20 Holubarsch C, Hasenfuss G, Just H, Alpert N R. Positive inotropism and myocardial energetics: influence of beta receptor agonist stimulation, phosphodiesterase inhibition, and ouabain.  Cardiovasc Res. 1994;  28 994-1002
  • 21 Holubarsch C, Hasenfuss G, Thierfelder L, Heiss H W, Just H. Vasodilation and positive inotropic effect of the phosphodiesterase inhibitor enoximone.  Z Kardiol. 1991;  80 (Suppl 4) 35-40
  • 22 Korbmacher B, Sunderdiek U, Arnold G, Schulte H D, Schipke J D. Improved ventricular function by enhancing the Ca++ sensitivity in normal and stunned myocardium of isolated rabbit hearts.  Basic Res Cardiol. 1994;  89 549-562
  • 23 Labriola C, Siro-Brigiani M, Carrata F, Santangelo E, Amantea B. Hemodynamic effects of levosimendan in patients with low-output heart failure after cardiac surgery.  Int J Clin Pharmacol Ther. 2004;  42 204-211
  • 24 Lancaster M K, Cook S J. The effects of levosimendan on Ca2+ in guinea-pig isolated ventricular myocytes.  Eur J Pharmacol. 1997;  339 97-100
  • 25 Lewis E F, Tsang S W, Fang J C. et al . Frequency and impact of delayed decisions regarding heart transplantation on long-term outcomes in patients with advanced heart failure.  J Am Coll Cardiol. 2004;  43 794-802
  • 26 Lilleberg J, Ylonen V, Lehtonen L, Toivonen L. The calcium sensitizer levosimendan and cardiac arrhythmias: an analysis of the safety database of heart failure treatment studies.  Scand Cardiovasc J. 2004;  38 80-84
  • 27 Lubbe W F, Podzuweit T, Opie L H. Potential arrhythmogenic role of cyclic adenosine monophosphate (AMP) and cytosolic calcium overload: implications for prophylactic effects of beta-blockers in myocardial infarction and proarrhythmic effects of phosphodiesterase inhibitors.  J Am Coll Cardiol. 1992;  19 1622-1633
  • 28 Lubsen J, Just H, Hjalmarsson A C. et al . Effect of pimobendan on exercise capacity in patients with heart failure: main results from the Pimobendan in Congestive Heart Failure (PICO) trial.  Heart. 1996;  76 223-231
  • 29 Lynch J J, Kitzen J M, Hoff P T, Lucchesi B R. Effects of pimobendan (UD-CG 115 BS), a new positive inotropic agent, on ventricular tachycardia and ischemic ventricular fibrillation in a conscious canine model of recent myocardial infarction.  J Cardiovasc Pharmacol. 1988;  12 547-554
  • 30 Matsui K, Kiyosue T, Wang J C, Dohi K, Arita M. Effects of pimobendan on the L-type Ca2+ current and developed tension in guinea-pig ventricular myocytes and papillary muscle: comparison with IBMX, milrinone, and cilostazol.  Cardiovasc Drugs Ther. 1999;  13 105-113
  • 31 Maury P, Baixas C, Roncalli J. et al . Resumption of atrioventricular conduction by levosimendan after radiofrequency ablation of the AV node.  Pacing Clin Electrophysiol. 2004;  27 1314-1316
  • 32 Moiseyev V S, Poder P, Andrejevs N. et al . Safety and efficacy of a novel calcium sensitizer, levosimendan, in patients with left ventricular failure due to an acute myocardial infarction. A randomized, placebo-controlled, double-blind study (RUSSLAN).  Eur Heart J. 2002;  23 1422-1432
  • 33 Mori M, Takeuchi M, Takaoka H, Yokoyama M. Lusitropic effects of a Ca2+ sensitization with a new cardiotonic agent, MCI-154, on diseased human hearts.  Cardiovasc Res. 1995;  30 915-922
  • 34 Pataricza J, Krassoi I, Hohn J, Kun A, Papp J G. Functional role of potassium channels in the vasodilating mechanism of levosimendan in porcine isolated coronary artery.  Cardiovasc Drugs Ther. 2003;  17 115-121
  • 35 Poder P, Eha J, Sundberg S. Pharmacodynamics and pharmacokinetics of oral levosimendan and its metabolites in patients with severe congestive heart failure: a dosing interval study.  J Clin Pharmacol. 2004;  44 1143-1150
  • 36 Sato S, Talukder M A, Sugawara H, Sawada H, Endoh M. Effects of levosimendan on myocardial contractility and Ca2+ transients in aequorin-loaded right-ventricular papillary muscles and indo-1-loaded single ventricular cardiomyocytes of the rabbit.  J Mol Cell Cardiol. 1998;  30 1115-1128
  • 37 Shahid M, Nicholson C D. Comparison of cyclic nucleotide phosphodiesterase isoenzymes in rat and rabbit ventricular myocardium: positive inotropic and phosphodiesterase inhibitory effects of Org 30 029, milrinone and rolipram.  Naunyn Schmiedebergs Arch Pharmacol. 1990;  342 698-705
  • 38 Shakar S F, Abraham W T, Gilbert E M. et al . Combined oral positive inotropic and beta-blocker therapy for treatment of refractory class IV heart failure.  J Am Coll Cardiol. 1998;  31 1336-1340
  • 39 Szilagyi S, Pollesello P, Levijkovi J. et al . The effects of levosimendan and OR-1896 on isolated hearts, myocyte-sized preparations and phosphodiesterase enzymes of the guinea pig.  Eur J Pharmacol. 2004;  486 67-74
  • 40 Takaoka H, Takeuchi M, Hata K. et al . Beneficial effects of a Ca2+ sensitizer, MCI-154, on the myocardial oxygen consumption-cardiac output relation in patients with left ventricular dysfunction after myocardial infarction: comparison with dobutamine and phosphodiesterase inhibitor.  Am Heart J. 1997;  133 283-289
  • 41 The EPOCH Study Group . Effects of pimobendan on adverse cardiac events and physical activities in patients with mild to moderate chronic heart failure: the effects of pimobendan on chronic heart failure (EPOCH study).  Circ J. 2002;  66 149-157
  • 42 Usta C, Puddu P E, Papalia U. et al . Comparision of the inotropic effects of levosimendan, rolipram, and dobutamine on human atrial trabeculae.  J Cardiovasc Pharmacol. 2004;  44 622-625
  • 43 Verde I, Vandecasteele G, Lezoualch F, Fischmeister R. Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes.  Br J Pharmacol. 1999;  127 65-74
  • 44 Westfall M V, Wahler G M, Fujino K, Solaro R J. Electrophysiological actions of the pimobendan metabolite, UD-CG 212 Cl, in guinea pig myocardium.  J Pharmacol Exp Ther. 1992;  260 58-63

Prof. Dr. Robert H. G. Schwinger

Klinik III für Innere Medizin, Labor für Herzmuskelphysiologie und Molekulare Kardiologie

Josef-Stelzmann-Straße 9

50924 Köln

Phone: 0221/4783138

Fax: 0221/4783746

Email: Robert.Schwinger@medizin.uni-koeln.de

    >