Synthesis 2005(8): 1368-1377  
DOI: 10.1055/s-2005-865337
FEATUREARTICLE
© Georg Thieme Verlag Stuttgart · New York

Stereochemical Study on α-Alkylation of β-Branched α-Amino Acid Derivatives­ via Memory of Chirality

Takeo Kawabata*, Jianyong Chen, Hideo Suzuki, Kaoru Fuji
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
Fax: +81(774)383197; e-Mail: kawabata@scl.kyoto-u.ac.jp;
Further Information

Publication History

Received 21 March 2005
Publication Date:
25 April 2005 (online)

Abstract

α-Alkylation of N-Boc-N-MOM amino acid derivatives with an additional chiral center at the β-carbon proceeded with retention of configuration, irrespective of the chirality at the β-carbon. The C-N axial chirality of the enolate intermediates played a decisive role in the stereochemical course of the alkylation, while the central chirality of the β-carbon had little effect. Amino acid derivatives with contiguous quaternary and tertiary stereocenters are readily obtained in a stereochemically expectable manner.

    References

  • For recent reviews, see:
  • 1a Corey EJ. Guzman-Perez A. Angew Chem. Int. Ed.  1998,  37:  388 
  • 1b Christoffers J. Mann A. Angew. Chem. Int. Ed.  2001,  40:  4591 
  • 2 Kawabata T. Fuji K. Topics in Stereochemistry   Vol. 23:  Denmark SE. John Wiley & Sons; New York: 2003.  Chap. 3. p.175 
  • For a recent review on memory of chirality, see:
  • 3a Zhao H. Hsu DC. Carlier PR. Synthesis  2005,  1 
  • For reactions related to memory of chirality, see:
  • 3b Beagley B. Betts MJ. Pritchard RG. Schofield A. Stoodley RJ. Vohra S. J. Chem. Soc., Chem. Commun.  1991,  924 
  • 3c Betts MJ. Pritchard RG. Schofield A. Stoodley RJ. Vohra S. J. Chem. Soc., Perkin Trans. 1  1999,  1067 
  • 3d Gerona-Navarro G. Bonache MA. Herranz R. García-López MT. González-Muñiz R. J. Org. Chem.  2001,  66:  3538 
  • 3e Bonache MA. Gerona-Navarro G. Martín-Martínez M. García-López MT. López P. Cativiela C. González-Muñiz R. Synlett  2003,  1007 
  • 3f Carlier PR. Zhao H. DeGuzman J. Lam PC.-H. J. Am. Chem. Soc.  2003,  125:  11482 
  • 3g Kawabata T. Ozturk O. Suzuki H. Fuji K. Synthesis  2003,  505 
  • 3h Kawabata T. Kawakami S. Shimada S. Fuji K. Tetrahedron  2003,  59:  965 
  • 4 Kawabata T. Suzuki H. Nagae Y. Fuji K. Angew. Chem. Int. Ed.  2000,  39:  2155 
  • 5 Kawabata T. Kawakami S. Majumdar S. J. Am. Chem. Soc.  2003,  125:  13012 
  • 6 Kawabata T. Chen J. Suzuki H. Nagae Y. Kinoshita T. Chancharunee S. Fuji K. Org. Lett.  2000,  2:  3883 
  • 12 Kazmierski WM. Urbanczyk-Lipkowska Z. Hruby VJ. J. Org. Chem.  1994,  59:  1789 
  • 14 Monte-Carlo conformational search (5000 steps) and MM3* calculation were carried out with MacroModel V. 6.0: Mohamadi F. Richards NGJ. Guida WC. Liskamp R. Lipton M. Caufield C. Chang G. Hendrickson T. Still WC. J. Comp. Chem.  1990,  11:  440 
  • For utility of non-proteinogenic α-amino acids with quaternary stereocenters, see:
  • 15a Horwell DC. Hughes J. Hunter JC. Pritchard MC. Richardson RS. Roberts E. Woodruff GN. J. Med. Chem.  1991,  34:  404 
  • 15b Altmann K.-H. Altmann E. Mutter M. Helv. Chim. Acta  1992,  75:  1198 
  • 15c Mendel D. Ellman J. Schultz PG. J. Am. Chem. Soc.  1993,  115:  4359 
  • 15d Stilz HU. Jablonka B. Just M. Knolle J. Paulus EF. Zoller G. J. Med. Chem.  1996,  39:  2118 
  • 15e Chinchilla R. Falvello LR. Galindo N. Nájera C. Angew. Chem., Int. Ed. Engl.  1997,  36:  995 
  • For excellent methods for asymmetric synthesis of α,α-disubtituted α-amino acid derivatives, see:
  • 16a Seebach D. Boes M. Naef R. Schweizer WB. J. Am. Chem. Soc.  1983,  105:  5390 
  • 16b Vedejs E. Fields SC. Schrimpf MR. J. Am. Chem. Soc.  1993,  115:  11612 
  • 16c Ferey V. Toupet L. Gall TL. Mioskowski C. Angew. Chem., Int. Ed. Engl.  1996,  35:  430 
  • 16d Vedejs E. Fields SC. Hayashi R. Hitchcock SR. Powell DR. Schrimpf MR. J. Am. Chem. Soc.  1999,  121:  2460 
  • 16e Kuwano R. Ito Y. J. Am. Chem. Soc.  1999,  121:  3236 
  • 16f Ooi T. Takeuchi M. Kameda M. Maruoka K. J. Am. Chem. Soc.  2000,  122:  5228 
  • 17 Brown CA. J. Org. Chem.  1974,  39:  3913 
  • 18 Shapiro G. Buechler D. Marzi M. Schmidt K. Gometz-Lor B. J. Org. Chem.  1995,  60:  4978 
7

A similar temperature-dependent decrease in ee was also observed in the α-methylation of 19: When enolate formation was performed at -78 °C for 30 min, the subsequent methylation at -78 °C gave a product of 81% ee. When enolate formation was performed at -78 °C for 30 min and then at -40 °C for 30 min, the subsequent methylation at -78 °C gave a product of 5% ee. Enolate formation at -78 °C for 30 min and then at 0 °C for 30 min gave a product of 0% ee. This can be rationalized by temperature-dependent epimerization of the chiral enolate intermediate J via bond rotation of the C(2)-N axis. Details are discussed in reference 2.

8

Enolate F generated from 7 or 10 is not axially chiral along the C(2)-N axis because of the same two substituents on the nitrogen atom, even if the bond rotation is restricted at -78 °C.

9

The stereochemistry of 8 and 9 was determined after their conversion into the corresponding p-nitrobenzamide derivatives, see ref. 6.

10

Similar stereochemical results were observed in the α-allylation of 3 and 6, see reference 6.

11

Enolate G generated from 11 or 14 is not axially chiral along the C(2)-N axis because of the same two substituents on the nitrogen atom, even if the bond rotation is restricted at -78 °C.

13

While N-methylation took place during the transformation from 16 into 27, it did not during that from 17 into 28, probably due to the steric hindrance caused by diaxial 3,4-dimethyl groups in 28.