References
<A NAME="RD36704ST-1">1</A>
Gabriele B.
Salerno G.
Plastina P.
Costa M.
Crispini A.
Adv. Synth. Catal.
2004,
346:
351
<A NAME="RD36704ST-2">2</A>
Gabriele B.
Salerno G.
Veltri L.
Costa M.
J. Organomet. Chem.
2001,
622:
84
<A NAME="RD36704ST-3">3</A> 2-Ynylamines 3 were easily prepared starting from 2-yn-1-olacetates according to a literature procedure,
see:
Imada Y.
Yuasa M.
Nakamura I.
Murahashi S.
J. Org. Chem.
1994,
59:
2282
<A NAME="RD36704ST-4">4</A>
Typical Procedure for the Oxidative Aminocyclo-carbonylation of 2-Ynylamines 3.
All carbonylations were carried out in a 250 mL stainless steel autoclave with magnetic
stirring. In a typical experiment, the autoclave was charged in the presence of air
with PdI2 (15.0 mg or 30.0 mg, 4.2·10-2 or 8.3·10-2 mmol), KI (70.0 mg or 138.0 mg, 0.42 mmol or 0.83 mmol), and a solution of 3 (4.2 mmol) and the amine (8.4 mmol) in MeOH (8.4 mL). While the mixture was stirred,
the autoclave was charged with CO (16 atm) and air (4 atm), and then heated at 100
°C with stirring for 15-20 h (see Table
[1]
). After cooling, the autoclave was degassed and opened. Pure products 4 were isolated by column chromatography (neutral Al2O3, hexane-EtOAc from 8:2 to 7:3 as the eluent) after removal of the solvent by rotary
evaporation.
<A NAME="RD36704ST-5">5</A>
1-Benzyl-5,5-dimethyl-4-(morpholin-4-yl)-1,5-dihydropyrrol-2-one (4a): yellow solid (0.78 g, 65% yield based on 3a); mp 144-145 °C. IR (KBr): ν = 2961 (m), 1651 (s), 1601 (m), 1454 (w), 1414 (w),
1232 (w), 1115 (m), 707 (w) cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.34-7.16 (m, 5 H, Ph), 4.89 (s, 1 H, =CH), 4.55 (s, 2 H, NCH
2Ph), 3.78-3.71 (m, 4 H, CH2OCH2), 3.25-3.19 (m, 4 H, CH2NCH2), 1.33 (s, 6 H, CMe2). 13C NMR (75 MHz, CDCl3): δ = 171.0, 170.1, 139.7, 128.3, 127.4, 126.8, 92.4, 66.2, 63.7, 48.1, 41.4, 24.4.
MS (EI, 70 eV): m/z (%) = 286 (100) [M+], 271 (10), 182 (10), 181 (46), 166 (9), 138 (13), 108 (10), 91 (61). Anal. Calcd
for C17H22N2O2 (286.37): C, 71.30; H, 7.74; N, 9.78. Found: C, 71.44; H, 7.72; N. 9.79.
1-Benzyl-5,5-dimethyl-4-(piperidin-1-yl)-1,5-dihydropyrrol-2-one (4a′): yellow oil (0.66 g, 55% yield based on 3a). IR (film): ν = 2933 (w), 1656 (s), 1579 (s), 1391 (m), 1236 (w), 1025 (w), 708
(w) cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.35-7.15 (m, 5 H, Ph), 4.80 (s, 1 H, =CH), 4.54 (s, 2 H, NCH
2Ph), 3.62-3.13 (m, 4 H, CH2NCH2), 1.75-1.45 (m, 6 H, NCH2CH
2CH
2CH
2CH2), 1.33 (s, 6 H, CMe2). 13C NMR (75 MHz, CDCl3): δ = 171.7, 170.0, 140.0, 128.2, 127.4, 126.7, 89.7, 63.8, 49.2, 41.4, 25.4, 24.3,
24.1. MS (EI, 70 eV): m/z (%) = 285 (20) [M+ + 1], 284 (100) [M+], 269 (16), 193 (21), 180 (19), 179 (49), 162 (16), 151 (14), 150 (26), 136 (56),
109 (19), 108 (15), 91 (66), 84 (26), 67 (14). Anal. Calcd for C18H24N2O (284.40): C, 76.02; H, 8.51; N, 9.85. Found: C, 76.13; H, 8.50; N. 9.87.
1-Benzyl-5-ethyl-5-methyl-4-(morpholin-4-yl)-1,5-dihydropyrrol-2-one (4b): yellow solid (0.95 g, 75% yield based on 3b); mp 136-137 °C. IR (KBr): ν = 2968 (m), 1657 (s), 1585 (s), 1395 (m), 1239 (m),
1120 (m), 1031 (w), 905 (w), 782 (w), 711 (w) cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.40-7.15 (m, 5 H, Ph), 4.94 (s, 1 H, =CH), 4.68 (distorted d, J = 16.1 Hz, 1 H, NCHHPh), 4.26 (distorted d, J = 16.1 Hz, 1 H, NCHHPh), 3.78-3.68 (m, 4 H, CH2OCH2), 3.27-3.17 (m, 4 H, CH2NCH2), 1.86-1.60 (m, 2 H, CH
2CH3), 1.28 (s, 3 H, CH
3CCH2CH3), 0.56 (t, J = 7.3 Hz, 3 H, CH2CH
3). 13C NMR (75 MHz, CDCl3): δ = 171.7, 167.3, 139.3, 128.0, 127.5, 126.6, 93.8, 67.3, 66.0, 47.6, 41.2, 28.6,
24.2, 7.4. MS (EI, 70 eV): m/z (%) = 300 (46) [M+], 285 (15), 272 (38), 271 (35), 181 (15), 180 (10), 167 (25), 139 (21), 92 (9), 91
(100), 65 (10). Anal. Calcd for C18H24N2O2 (300.40): C, 71.97; H, 8.05; N, 9.33. Found: C, 72.12; H, 8.03; N. 9.35.
1-Benzyl-5-ethyl-4-(morpholin-4-yl)-1,5-dihydropyrrol-2-one (4c): yellow oil (0.84 g, 70% yield based on 3c). IR (film): ν = 1657 (s), 1600 (s), 1407 (m), 1231 (m), 1115 (m), 705 (w) cm-1. 1H NMR (300 MHz, acetone-d
6): δ = 7.39-7.15 (m, 5 H, Ph), 4.95 (distorted d, J = 15.4 Hz, 1 H, NCHHPh), 4.87 (s, 1 H, =CH), 4.15 (t, J = 3.6 Hz, 1 H, HCCH2CH3), 4.01 (distorted d, J = 15.4 Hz, 1 H, NCHHPh), 3.77-3.49 (m, 4 H, CH2OCH2), 3.19-2.99 (m, 4 H, CH2NCH2), 1.96-1.60 (m, 2 H, CH
2CH3), 0.63 (t, J = 7.3 Hz, 3 H, Me). 13C NMR (75 MHz, acetone-d
6): δ = 173.0, 166.2, 139.7, 129.2, 128.7, 127.8, 94.5, 66.7, 58.9, 49.05, 43.5, 22.4,
6.1. MS (EI, 70 eV): m/z (%) = 286 (45) [M+], 271 (4), 258 (55), 257 (27), 229 (5), 221 (6), 207 (13), 193 (9), 181 (5), 167
(21), 166 (11), 153 (16), 147 (6), 135 (7), 125 (17), 108 (7), 91(100), 73 (22), 65
(10), 53 (6). Anal. Calcd for C17H22N2O2 (286.17): C, 71.30; H, 7.74; N, 9.78. Found: C, 71.44; H, 7.73; N. 9.76.
1-Benzyl-4-(morpholin-4-yl)-5-(2-phenylethyl)-1,5-dihydropyrrol-2-one (4d): yellow oil (1.19 g, 78% yield based on 3d). IR (film): ν = 2961 (w), 2920 (w), 2854 (m), 1664 (s), 1599 (s), 1443 (m), 1405
(m), 1234 (m), 1115 (m), 706 (m) cm-1. 1H NMR (300 MHz, acetone-d
6): δ = 7.40-6.96 (m, 10 H, 2 Ph), 4.92 (s, 1 H, =CH), 4.83 (distorted d, J = 15.4 Hz, 1 H, NCHHPh), 4.32 (distorted d, J = 15.4 Hz, 1 H, NCHHPh), 4.26 (t, J = 3.5 Hz, 1 H, HCCH2CH2Ph), 3.74-3.52 (m, 4 H, CH2OCH2), 3.20-3.01 (m, 4 H, CH2NCH2), 2.41-2.23 (m, 2 H, CH2CH
2Ph), 2.16-1.84 (m, 2 H, CH
2CH2Ph). 13C NMR (75 MHz, acetone-d
6): δ = 173.1, 166.4, 142.7, 140.0, 129.3, 129.2, 129.1, 128.9, 127.9, 126.5, 94.5,
66.8, 59.2, 49.0, 44.3, 32.4, 28.9. MS (EI, 70 eV): m/z (%) = 362 (2) [M+], 341 (1), 259 (16), 258 (100), 193 (3), 168 (6), 167 (62), 91 (59), 73 (8), 65 (5).
Anal. Calcd for C23H26N2O2 (362.46): C, 76.21; H, 7.23; N, 7.73. Found: C, 76.09; H, 7.24; N. 7.71.
<A NAME="RD36704ST-6">6</A>
Sammes PG.
Weller DJ.
Synthesis
1995,
1205
<A NAME="RD36704ST-7">7</A>
Katritzky AR.
Pozharskii AF.
Handbook of Heterocyclic Chemistry
2nd ed.:
Pergamon;
Kidlington Oxford:
2000.
p.248
<A NAME="RD36704ST-8">8</A>
Gabriele B.
Costa M.
Salerno G.
Chiusoli GP.
J. Chem. Soc., Perkin Trans. 1
1994,
83
For some recent leading examples, see:
<A NAME="RD36704ST-9A">9a</A>
Aszodi J.
Rowlands DA.
Mauvais P.
Collette P.
Bonnefoy A.
Lampilas M.
Bioorg. Med. Chem. Lett.
2004,
14:
2489
<A NAME="RD36704ST-9B">9b</A>
Zhao H.
Thurkauf A.
Braun J.
Brodbeck R.
Kieltyka A.
Bioorg. Med. Chem. Lett.
2000,
10:
2119
<A NAME="RD36704ST-9C">9c</A>
Bhattia SH.
Davies GM.
Hitchcock PB.
Loakes D.
Young DW.
J. Chem. Soc., Perkin Trans. 1
1999,
2449
<A NAME="RD36704ST-9D">9d</A>
Corey EJ.
Li W.-D.
Chem. Pharm. Bull.
1999,
47:
1
<A NAME="RD36704ST-9E">9e</A>
Kar GK.
Roy BC.
Das Adhikaru S.
Ray JK.
Brahma NK.
Bioorg. Med. Chem.
1998,
6:
2397
<A NAME="RD36704ST-9F">9f</A>
Dugar S.
Kirkup MP.
Clader JW.
Si L.
Rizvi R.
Snow ME.
Davis HR.
McCombie SW.
Bioorg. Med. Chem. Lett.
1995,
5:
2947
For a review on the classical methods of synthesis of tetramic acids, see:
<A NAME="RD36704ST-10A">10a</A>
Henning H.
Gelbin A.
Adv. Heterocycl. Chem.
1993,
57:
139
<A NAME="RD36704ST-10B">10b</A> For some recent developments in the synthesis of tetramic acids, see:
Huang PQ.
Deng J.
Synlett
2004,
247
<A NAME="RD36704ST-10C">10c</A>
Schobert R.
Gordon GJ.
Mullen G.
Stehle R.
Tetrahedron Lett.
2004,
45:
1121
<A NAME="RD36704ST-10D">10d</A>
Detsi A.
Afantitis A.
Athanasellis G.
Markopoulos J.
Igglessi-Markopoulou O.
Skylaris CK.
Eur. J. Org. Chem.
2003,
4593
<A NAME="RD36704ST-10E">10e</A>
Longbottom DA.
Morrison AJ.
Dixon DJ.
Ley SV.
Tetrahedron
2003,
59:
6955
<A NAME="RD36704ST-10F">10f</A>
Paintner FF.
Metz M.
Bauschke G.
Synlett
2003,
627
<A NAME="RD36704ST-10G">10g</A>
Paintner FF.
Metz M.
Bauschke G.
Synthesis
2002,
869
<A NAME="RD36704ST-10H">10h</A>
Athanasellis G.
Gavrielatos E.
Igglessi-Markopoulou O.
J. Heterocycl. Chem.
2001,
38:
1203
<A NAME="RD36704ST-10I">10i</A>
Athanasellis G.
Gavrielatos E.
Igglessi-Markopoulou O.
Synlett
2001,
1653
<A NAME="RD36704ST-11A">11a</A>
Royles BJL.
Chem. Rev.
1995,
95:
1981
<A NAME="RD36704ST-11B">11b</A> For recent leading examples, see:
Ganzle MG.
Appl. Microbiol. Biotechnol.
2004,
64:
326
<A NAME="RD36704ST-11C">11c</A>
Graupner PR.
Carr A.
Clancy E.
Gilbert J.
Bailey KL.
Derby JA.
Gerwick BC.
J. Nat. Prod.
2003,
66:
1558
<A NAME="RD36704ST-11D">11d</A>
Schmidt K.
Riese U.
Li ZZ.
Hamburger M.
J. Nat. Prod.
2003,
66:
378
<A NAME="RD36704ST-11E">11e</A>
Segeth MP.
Bonnefoy A.
Bronstrup M.
Knauf M.
Schummer D.
Toti L.
Vertesy L.
Wetzel-Raynal MC.
Wink J.
Seibert G.
J. Antibiot.
2003,
56:
114
<A NAME="RD36704ST-11F">11f</A>
Wang CY.
Wang BG.
Wiryowidagdo S.
Wray V.
van Soest R.
Steube KG.
Guan HS.
Proksch P.
Ebel R.
J. Nat. Prod.
2003,
66:
51
<A NAME="RD36704ST-12">12</A>
A mixture of pure 4a (0.6 g, 2.1 mmol) in 2 N HCl (10 mL) was stirred at r.t. for 2 h. The crude mixture
was extracted several times with Et2O and the collected organic layers were dried over Na2SO4. After filtration and removal of the solvent by rotary evaporation, 1-benzyl-5,5-dimethyl-pyrrolidine-2,4-dione
(5a) was purified by column chromatography (neutral Al2O3) using as eluent 6:4 hexane-EtOAc (colorless solid, 0.45 g, 99% based on 4a). Mp 114-116 °C. IR (KBr): ν = 2973 (m), 1768 (s), 1686 (s), 1407 (m), 1359 (m),
1201 (m), 1107 (w), 701 (m) cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.36-7.22 (m, 5 H, Ph), 4.61 (s, 2 H, NCH2), 3.15 (s, 2 H, CH2C=O), 1.22 (s, 6 H, CMe2). 13C NMR (75 MHz, CDCl3): δ = 209.3, 168.2, 137.9, 128.7, 127.9, 127.6, 68.8, 42.9, 39.2, 23.3. MS (EI, 70
eV):
m/z (%) = 217 (44) [M+], 146 (20), 132 (13), 106 (55), 92 (8), 91 (100), 70 (16), 65 (16). Anal. Calcd for
C13H15NO2 (217.26): C, 71.87; H, 6.96; N, 6.45. Found: C, 71.74; H, 6.95; N. 6.47.
<A NAME="RD36704ST-13">13</A>
In a typical experiment, the autoclave was charged in the presence of air with PdI2 (30.0 mg, 8.3·10-2 mmol), KI (138.0 mg, 0.83 mmol), and a solution of 3a (730.0 mg, 4.2 mmol) and morpholine (730.0 mg, 8.4 mmol) in MeOH (8.4 mL). While
the mixture was stirred, the autoclave was charged with CO (16 atm) and air (4 atm),
and then heated at 100 °C with stirring for 15 h. After cooling, the autoclave was
degassed, and 1% HCl (15 mL) was slowly added to the crude reaction with stirring.
After additional stirring at r.t. for 2 h, the hydrolyzed mixture was extracted several
times with Et2O, and the collected organic layers were dried over Na2SO4. After filtration and removal of the solvent by rotary evaporation, tetramic acid
5a was purified as described in ref. 12 (0.50 g, 55% yield based on 3a).