Synlett 2005(5): 0797-0800  
DOI: 10.1055/s-2005-863749
LETTER
© Georg Thieme Verlag Stuttgart · New York

Use of Oxirane Ring-Opening Reactions for Synthesis of Ethylene-bis(indenyl) Ligands Containing Alkene Tethers

Anthony P. Panarello, Oleksiy Vassylyev, Johannes G. Khinast*
Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Rd. Piscataway, NJ 08854, USA
Fax: +1(732)4452581; e-Mail: khinast@soemail.rutgers.edu;
Further Information

Publication History

Received 14 December 2004
Publication Date:
09 March 2005 (online)

Abstract

An efficient strategy is presented for the synthesis of novel bis-indenyl ligands containing alkene tethers for their further immobilization. The tether was attached to a bridge or aromatic ring of the ligand. The ligands were prepared using oxirane ring-opening reaction.

    References

  • 1a Yun J. Buchwald SL. J. Org. Chem.  2000,  65:  767 
  • 1b Morken JP. Didiuk MT. Visser MS. Hoveyda AH. J. Am. Chem. Soc.  1994,  116:  3123 
  • 1c Reding MT. Buchwald SL. J. Org. Chem.  1998,  63:  6344 
  • 1d Halterman RL. Chem. Rev.  1992,  92:  965 
  • 1e Waymouth R. Pino P. J. Am. Chem. Soc.  1990,  112:  4911 
  • 1f Willoughby CA. Buchwald SL. J. Am. Chem. Soc.  1994,  116:  11703 
  • 1g Melillo G. Izzo L. Zinna M. Tedesco C. Oliva L. Macromolecules  2002,  35:  9256 
  • 1h Zambelli A. Longo P. Grassi A. Macromolecules  1989,  22:  2189 
  • 1i Gansauer A. Moschioni M. Bauer D. Eur. J. Org. Chem.  1998,  1923 
  • 2a Chiral Catalyst Immobilization and Recycling   De Vos DE. Vankelecom IFJ. Jacobs PA. Wiley; Weinheim: 2000. 
  • 2b Haag MC. Dupont J. Stedile FC. dos Santos JHZ. J. Mol. Catal. A: Chem.  2003,  197:  223 
  • 2c Marques MFV. Pombo CC. Silva RA. Conte A. Eur. Polym. J.  2003,  39:  561 
  • 2d Herrmann WA. Cornils B. Appl. Homogen. Catal. Organomet. Compd.  1996,  2:  1167 
  • 2e Pomogailo AD. Kinet. Catal.  2004,  45:  61 
  • 2f Abbenhuis HCL. Angew. Chem. Int. Ed.  1999,  38:  1058 
  • 2g Carnahan EM. Jacobsen GB. CATTECH  2000,  4:  74 
  • 3a McMorn P. Hutchings GJ. Chem. Soc. Rev.  2004,  33:  108 
  • 3b Valkenberg MH. Holdenich WF. Catal. Rev.  2002,  44 (2):  321 
  • 4a Huttenloch ME. Dorer B. Riet U. Prosenc M.-H. Schmidt K. Brintzinger HH. J. Organomet. Chem.  1997,  541:  219 
  • 4b Metallocene-Based Polyolefins   Scheirs J. Kaminsky W. Wiley; Chichester: 2000. 
  • 4c Organometallic Catalyst and Olefin Polymerization   Blom R. Follestad A. Rytter E. Tilsel M. Ystenes M. Springer; Berlin: 2001. 
  • 4d Spaleck W. Aulbach M. Bachmann B. Kueber F. Winter A. Macromol. Symp.  1995,  89:  237 
  • 4e Resconi L. Cavallo L. Fait A. Piemontesi F. Chem. Rev.  2000,  100:  1253 
  • 4f Kaminsky W. J. Polym. Sci., Part A: Polym. Chem.  2004,  42:  3911 
  • 4g Kaminsky W. Laban A. Appl. Catal. A: General  2001,  222:  47 
  • 4h Busico V. Cipullo R. Prog. Polym. Sci.  2001,  26:  443 
  • 4i Imuta J.-I. Tsutsui T. Yoshitugu K. Matsugi T. Kashiwa N. Organomet. Catal. Olefin Polym.  2001,  427 
  • 4j Buchwald SL, and Grossman RB. inventors; US Patent  5004820. 
  • 5 Panarello A. Khinast JG. Tetrahedron Lett.  2003,  44:  4095 
  • 7 Sandoval JE, and Pesek JJ. inventors; US Patent  5017540. 
  • 8 Collins S., Bradly A., Taylor N. J., Ward D. G.; J. Organomet. Chem.; 1988, 342: 21
  • 10a Chanh H. Derguini-Boumechal F. Linstrumelle G. Tetrahedron Lett.  1979,  17:  1503 
  • 10b Fujisawa T. Sato T. Kawara T. Ohashi K. Tetrahedron Lett.  1981,  22:  4823 
  • 12 6-Bromo-indene was quantatively prepared by reducing 6-bromo-indanone using lithium aluminum hydride (LiAlH4) in Et2O and then reacting with p-toluenesulfonic acid (p-TsOH) in benzene. See: Polo E. Bellabarba RM. Prini G. Traverso O. G reen MLH. J. Organomet. Chem.  1999,  577:  211 
6

Panarello, A.; Vassylyev, O.; Khinast, J. G. Tetrahedron Lett. 2005, accepted for publication.

9

Ethylene oxide (2 mol equiv) passed through a solution of 2 (1 mol equiv) in THF at -78 °C for 2 h. Then the reaction mixture was kept at stirring for 1.5 h at 0 °C and allowed to gradually warming to r.t. overnight, quenched by aq NH4Cl and extracted by Et2O. Organic phase was washed with H2O, dried over MgSO4 and purified by column chromatography with hexane-Et2O mixture (5:2).

11

General Procedure for Iodination.
Hydroxy-compound was dissolved in a mixture Et2O-MeCN (4:1) together with PPh3 (1.1 mol equiv), imidazole (2 mol equiv) and I2 (2 mol equiv). After 20 min of stirring at r.t., the reaction mixture was diluted by Et2O, filtered, liquid phase washed by aq NaHCO3 and brine, dried over MgSO4 and concentrated. The product was purified by column chromatography using hexane as eluent.

13

General Procedure for Preparation of bis-Indenyl Compounds.
Iodide compound (1.05 mol equiv) in THF-hexanes was added dropwise to the solution of 2 (1 mol equiv) in THF at -78 °C during 25 min, and allowed to warm to r.t. overnight. Then the reaction mixture was treated similar to 3.

14

The Suzuki Coupling Reaction Using Pd(PPh 3 ) 4 .
In an oven-dried reaction flask equipped with a reflux head and a stir bar, Pd(PPh3)4 (1 mol%), arylboronic acid 13 (0.32 mmol, 1.3 mol equiv) and 12 (0.25 mmol, 1 mol equiv) were charged to a solution of DMM (4 mL). The mixture was allowed to stir at r.t. while aq K2CO3 (2.0 M, 3.3 mol equiv) was added. The reaction was then placed in an oil bath and refluxed for 6 h. The reaction was quenched at r.t. by adding H2O (25 mL) and CH2Cl2 (25 mL). A liquid-liquid extraction was performed, where the organic phase was collected and dried over MgSO4. The reaction mixture was then purified by silica gel chromatography to afford the desired coupling product.

15

Solution of 2 (1.05 mol equiv) in THF was added dropwise to the solution of 9 (1 mol equiv) and catalytic amount of Cu2I2 in THF at 0 °C. Further treatment was similar to 3.

16

Isomers were characterized by the presence of the cyclopentadienyl peaks in the 1H NMR spectra. A decrease in the doublet intensity (δ = 6.25-6.15 ppm) is replaced by the alkene isomer peaks that show up as double doublets at δ = 7.00-6.95 and 6.70-6.55 ppm. In addition, a shift in the alkene peak was also observed; from δ = 5.90-5.80 to 5.65-5.75 ppm.

17

Analytical data for novel compounds. Data are reported for compound purity greater than 95% (trace solvent or moisture).
3-(2′-Hydroxyethyl)-1 H -indene ( 3): 1H NMR (CDCl3): δ = 7.50 (d, 1 H, J = 7 Hz), 7.40 (d, 1 H, J = 7 Hz), 7.35-7.30 (t, 1 H, J = 7 Hz), 7.30-7.25 (dt, 1 H, J = 7 Hz, 7 Hz), 6.35 (s, 1 H), 4.00-3.90 (br s, 2 H), 3.40 (s, 2 H), 2.90-2.85 (qt, 2 H, J = 2, 7 Hz), 2.10-2.00 (br s, 1 H). 13C NMR (CDCl3): δ = 145.0, 144.4, 140.8, 129.9, 126.1, 124.8, 123.9, 119.0, 61.1, 37.9, 31.2. MS: m/z = 160 [M]+, 143 [Ind - (CH2)2]+, 129 [Ind - CH2]+.
3-(2′-Iodoethyl)-1 H -indene (4): 1H NMR (CDCl3): δ = 7.60 (d, 1 H, J = 7 Hz), 7.45 (d, 2 H, J = 4 Hz), 7.40-7.35 (m, 1 H), 6.40 (s, 1 H), 3.60-3.55 (t, 2 H, J = 8 Hz), 3.45 (s, 2 H), 3.25-2.20 (t, 2 H, J = 8 Hz). 13C NMR (CDCl3): δ = 144.3, 143.1, 129.5, 126.3, 125.1, 124.1, 118.8, 38.1, 32.8, 3.1. Due to the instability of the compound, IR or MS could not be obtained. 13C NMR was only obtained after using a very high concentration 50 mg/mL and a small number of scans.

3-[2′-(1 H -Inden-3′′-yl)-ethyl]-5-bromo-1 H -indene (6): 1H NMR (CDCl3): δ = 7.50-7.47 (d, 1 H, J = 9 Hz), 7.45-7.40 (dd, 2 H, J = 8, 8 Hz), 7.35 (s, 2 H), 7.25 (d, 2 H, J = 7 Hz), 6.29 (s, 2 H), 3.36 (s, 2 H), 3.34-3.30 (d, 2 H, J = 10 Hz), 2.95 (s, 4 H). 13C NMR (CDCl3): δ = 147.7, 146.6, 145.3, 144.5, 143.9, 143.7, 143.6, 143.2, 129.7, 129.1, 128.4, 128.1, 127.3, 127.1, 126.1, 125.1, 124.7, 123.9, 122.2, 120.3, 120.1, 118.9, 118.8, 37.8, 37.7, 37.5, 26.2, 26.1. IR (NaBr): 3063, 2902, 1599, 1563, 1459, 1396, 1273, 1245, 1230, 1202, 1168, 1121, 1059, 1014, 967, 917, 863 (C=C), 809 (C=C), 773 (C=C), 719 (C=C) cm-1. Anal. Calcd for C20H17Br: m/z (%) = C, 71.2; H, 5.08. Found: C, 69.32; H, 5.07.
3-[2′-(1 H -Inden-3′′-yl)ethyl]-5-(4′′′-vinylphenyl)-1 H -indene (8): mp 104 °C(hexane).1H NMR (CDCl3): δ = 7.75 (s, 1 H), 7.60 (d, 2 H, J = 8 Hz), 7.59 (dd, 1 H, J = 8, 8 Hz), 7.52-7.42 (m, 5 H), 7.35 (t, 1 H, J = 7, 7 Hz), 7.25 (t, 1 H, J = 7 Hz), 6.85-6.75 (q, 1 H, J = 18 Hz), 6.35 (s, 1 H), 6.33 (s, 1 H), 5.85-5.78 (d, 1 H, J = 18 Hz), 5.32-5.25 (d, 1 H, J = 11 Hz), 3.45 (s, 2 H), 3.38 (s, 2 H), 2.90 (s, 4 H). 13C NMR (CDCl3): δ = 197.9, 145.3, 144.8, 144.5, 144.1, 144, 137.3, 136.5, 136.2, 128.5, 128.0, 127.4, 127.2, 126.6, 126, 125.1, 124.6, 123.8, 122.5, 119.1, 118.9, 113.6, 37.9, 37.8, 26.3. IR (NaBr): 3049, 2920, 1715, 1603 (C=C), 1460, 1396, 1265, 1167, 1060, 914, 821, 770, 736 cm-1. MS: m/z = 359 [M - 1]+, 333 [Ind - (CH2)2 - Ind - C6H4]+, 218 [Ind - C6H4 - CH=CH2]+.
3-(2′-Hydroxyhexen-5′-yl)-1 H -indene (11): 1H NMR (CDCl3): δ = 7.55 (d, 1 H, J = 7 Hz), 7.45 (d, 1 H, J = 7 Hz), 7.31 (t, 1 H, J = 8 Hz), 7.24 (t, 1 H, J = 8 Hz), 6.40 (s, 1 H), 5.95-5.85 (dq, 1 H, J = 5 Hz), 5.20-5.00 (dd, 2 H, J = 17, 10 Hz), 4.00 (br s, 1 H), 3.45-3.35 (s, 2 H), 2.90-2.85 (d, 1 H, J = 12 Hz), 2.80-2.75 (dd, 1 H, J = 16, 8 Hz), 2.40-2.20 (m, 2 H), 1.90-1.80 (s, 1 H), 1.80-1.75 (t, 2 H, J = 8 Hz). 13C NMR (CDCl3): δ = 145.0, 144.5, 141.1, 138.5, 130.8, 126.1, 124.8, 123.9, 119.2, 114.9, 69.5, 37.9, 36.3, 36.2, 30.2. MS: m/z = 214 [M]+, 197 [Ind - CH(CH2)2 - (CH2)2 - CH=CH2]+, 184 [Ind - CH(CH2)2 - (CH2)2 - CH2]+.
3-(2′-Iodohexen-5′-yl)-1 H -indene (12): 1H NMR (CDCl3): δ = 7.60 (d, 1 H, J = 7 Hz), 7.45-7.40 (m, 2 H), 7.40-7.35 (m, 1 H), 6.45 (s, 1 H), 5.95-5.85 (dq, 1 H, J = 7 Hz), 5.25-5.10 (dd, 2 H, J = 15, 8 Hz), 4.65 (m, 1 H), 3.50-3.30 (m, 3 H), 3.35-3.25 (m, 1 H), 2.60-2.50 (m, 1 H), 2.40-2.30 (m, 1 H), 2.15-1.95 (dm, 2 H). 13C NMR (CDCl3): δ = 144.7, 144.4, 142.3, 136.9, 130.8, 126.2, 125.0, 124.1, 118.9, 115.9, 40.2, 39.2, 38.1, 34.6, 34.0. IR: 3076, 3011, 2974, 2904, 2847, 2774, 1642, 1601, 1462, 1429, 1388, 1303, 1245, 1151, 996, 963, 923, 771, 747, 722, 694 cm-1. MS: m/z = 324 [M]+, 197 [Ind - CH(CH2)C4H7]+.
1,2-Bis(1H-inden-3′-yl)-hexene-5 (13): 1H NMR (CDCl3): δ = 7.50-7.47 (d, 1 H, J = 8 Hz), 7.46-7.44. (d, 2 H, J = 8 Hz) 7.40-7.35 (d, 1 H, J = 7 Hz), 7.35-7.25 (t, 2 H, J = 7 Hz), 7.25-7.15 (dd, 2 H, J = 8 Hz, 8 Hz), 6.28-6.25 (s, 1 H), 6.20-6.15 (s, 1 H), 5.80-5.75 (dq, 1 H, J = 6 Hz), 4.95-4.85 (dd, 2 H, J = 17, 10 Hz), 3.35-3.32 (s, 2 H) 3.30-3.27 (s, 1 H), 3.25-3.20 (t, 1 H, J = 7 Hz), 3.05-2.95 (m, 1 H), 2.95-2.85 (dd, 1 H, J = 8, 7 Hz), 2.15-2.05 (m, 1 H), 2.10-2.00 (m, 1 H), 1.90-1.85 (q, 2 H, J = 7 Hz). 13C NMR (CDCl3): δ = 147.6, 145.7, 145.1, 144.8, 144.4, 142.6, 138.8, 129.3, 127.9, 125.9, 125.8, 124.4, 124.4, 123.8, 123.7, 119.4, 118.9, 114.4, 37.8, 37.7, 36.3, 33.1, 32.8, 31.5. IR: 3068, 3007, 2974, 2917, 2851, 2765, 1642, 1605, 1458, 1388, 1021, 992, 972, 910, 771, 718 cm-1. MS: m/z = 311 [M]+.