Synlett 2005(2): 243-246  
DOI: 10.1055/s-2004-837193
LETTER
© Georg Thieme Verlag Stuttgart · New York

Facile Synthesis of α,ω-Bis(5-γ-tocopheryl)alkanes

Thomas Rosenau*a, Thomas Netscherb, Gerald Ebnera, Paul Kosmaa
a University of Natural Resources and Applied Life Sciences Vienna (BOKU), Department of Chemistry, Muthgasse 18, 1190 Vienna, Austria
b DSM Nutritional Products, Research and Development, P.O. Box 3255, 4002 Basel, Switzerland
Fax: +43(1)360066059; e-Mail: thomas.rosenau@boku.ac.at;
Further Information

Publication History

Received 18 October 2004
Publication Date:
17 December 2004 (online)

Abstract

α,ω-Bis(5-γ-tocopheryl)alkanes were prepared in a high yield, one-pot procedure starting from γ-tocopherol. The reaction involves acylation by carboxylic acid anhydrides to intermediate bis(phenones), which are subsequently reduced directly to the target alkylphenols by borohydride via ortho-quinone methide intermediates. Ethyl chloroformate acts as an auxiliary in both steps.

    References

  • 1a Packer L. Fuchs J. Vitamin E in Health and Disease   Marcel Dekker Inc.; New York: 1993. 
  • 1b Isler O. Brubacher G. Vitamins I   Georg Thieme Verlag; Stuttgart: 1982.  p.126 
  • 1c For a general review on chromans and tocopherols see: Parkhurst RM. Skinner WA. Chromans and Tocopherols, In Chemistry of Heterocyclic Compounds   Vol. 36:  Ellis GP. Lockhardt IM. Wiley; New York: 1981. 
  • 1d Netscher T. Synthesis and Production of Vitamin E, In Lipid Synthesis and Manufacture   Gunstone FD. Sheffield Academic Press Ltd.; Sheffield, UK: 1990.  p.250-267  
  • The preparation is given in:
  • 2a Schudel P. Mayer H. Metzger J. Rüegg R. Isler O. Helv. Chim. Acta  1963,  46:  636 
  • 2b For NMR data see: Schröder H. Netscher T. Magn. Reson. Chem.  2001,  39:  701 
  • 2c Fales HM. Lloyd HA. Ferretti JA. Silverton JV. Davis DG. Kon HJ. J. Chem. Soc., Perkin Trans. 2  1990,  1005 
  • 3 For a review on oQMs see: Van de Water RW. Pettus TRR. Tetrahedron  2002,  58:  5367 
  • 4a Nelan DR. Robeson CD. J. Am. Chem. Soc.  1962,  84:  2963 
  • 4b

    See also ref. [2a]

  • 5 Hope MJ. Bally MB. Webb G. Cullis PR. Biochim. Biophys. Acta  1985,  812:  55 
  • 6 Gille L. Staniek K. Nohl H. Free Radic. Biol. Med.  2001,  30:  865 
  • 7 Nakamura T. Kijima S. Chem. Pharm. Bull.  1972,  20:  1681 
  • 8 Rosenau T. Potthast A. Kosma P. Habicher WD. Synlett  1999,  291 
  • 9a de Bruyn PJ. Lim ASC. Looney MG. Solomon DH. Tetrahedron Lett.  1994,  35:  4627 
  • 9b

    This procedure provided a mixture of methano-dimer 7 and ethano-dimer 5, which was rather difficult to separate (unpublished results by T.N.).

  • 10 Rosenau T. Habicher WD. Tetrahedron  1995,  51:  7919 
  • 12a Pettus TRR. van De Water RW. Magdziak DJ. Chau JN. J. Am. Chem. Soc.  2000,  122:  6502 
  • 12b Rodriguez R. Adlington RM. Moses JE. Cowley A. Baldwin JE. Org. Lett.  2004,  6:  3617 
  • See also:
  • 15a McLoughlin BJ. J. Chem. Soc., Chem. Commun.  1969,  540 
  • 15b Minami N. Kijima S. Chem. Pharm. Bull.  1979,  27:  816 
  • 15c Mitchell D. Doecke CW. Hay LA. Koenig TM. Wirth DD. Tetrahedron Lett.  1995,  36:  5335 
11

The reaction time can be shortened to 24 h at r.t., followed by 1 h at 60 °C, albeit at the expense of partial epimerization (16%, tested by capillary electrophoresis) at C-2, which makes the product mixture more complex.
The NMR assignment for 7 in ref. [7] was incomplete. (all-R)-7: 1H NMR (300.13 MHz, CDCl3): δ = 4.12 (s, 2 H, H-5a), 2.74 (t, 4 H, 3 J = 6.8 Hz, H-4), 2.13 (s, 6 H, H-7a), 2.05 (s, 6 H, H-8b), 1.80 (m, 6 H, H-3). 13C NMR (75.47 MHz, CDCl3): δ = 145.5 (C-8b), 144.9 (C-6), 122.6 (C-8), 121.8 (C.7), 119.3 (C-5), 115.7 (C-4a), 75.7 (C-2), 33.1 (C-3), 23.4 (C-5a), 26.7 (C-2a), 20.5 (C-4), 13.1 (C-8b), 12.3 (C-7a). Anal. Calcd for C57H96O4 (845.40): C, 80.98; H, 11.45. Found: C, 81.13; H, 11.56.

13

Unpublished results (T.N.).

14

A solution of acylating agent (0.5 mmol), ClCO2Et (1 mmol, 0.11 g, M = 108.53), and BF3·OEt2 (7.1 mg, M = 141.93) in dioxane (10 mL) was added during 15 min to a solution of (all-R)-γ-tocopherol (1 mmol, 0.417 g) in the same solvent (50 mL). The mixture was stirred for about 1 h at r.t., and heated to reflux. ClCO2Et (0.2 mmol, 22 mg, M = 108.53) in 10 mL of dioxane was added dropwise during about 10 min, refluxing was continued for 1 h, and the mixture was cooled to 0 °C in an ice bath. ClCO2Et (2 mmol, 0.22 g, M = 108.53), H2O (30 mL) and fresh NaBH4 (4 mmol, 0.15 g) were added, and the mixture was stirred for 30 min in an inert atmosphere. 2 M HCl (aq) was slowly added until effervescence ceased. After addition of H2O (approx. 50 mL), the mixture was extracted three times with n-hexane (20 mL). The combined organic phases were washed with concd aq NaHCO3 solution and H2O. Drying, evaporation of the solvent under reduced pressure and column chromatography on silica gel in toluene-EtOAc (v/v = 1:1) afforded the pure products (for yields see Scheme [2] ).
The stereochemistry of the products was not further studied; even though (2R,4′R,8′R)-2 was used as starting material, a (partial) erosion of the stereochemistry cannot be excluded at this point. In the 13C NMR spectra only the data of the alkane bridges as well as C-4a, C-5 and C-6 are given, since the influence of the bridge length on the other tocopheryl resonances is very small (δ < 0.2 ppm). 1H resonances of the alkane bridges below δ = 1.8 ppm are superimposed by the strong signals of the isoprenoid side chain; their chemical shift was thus assigned by means of correlated spectra.
Propane derivative 8, light yellow, scaly wax, mp 42-45 °C. 1H NMR: δ = 2.76 (s, 4 H, HA), 2.74 (‘t’, 4 H, 3 J = 7.0 Hz, H-4), 2.12 (s, 6 H, H-7a), 2.04 (s, 6 H, H-8b), 1.80 (m, 4 H, H-3), 1.60 (pent, 2 H, HB). 13C NMR: δ = 145.3 (C-6), 123.8 (C-5), 115.8 (C-4a), 30.8 (CA), 22.3 (CB). Anal. Calcd for C59H100O4 (873.45): C, 81.13; H, 11.54. Found: C, 81.22; H, 11.72.
Butane derivative 9, colorless, waxy flakes, mp 38-40 °C. 1H NMR: δ = 2.72 (‘t’, 4 H, 3 J = 7.0 Hz, H-4), 2.70 (t, 4 H, HA), 2.13 (s, 6 H, H-7a), 2.05 (s, 6 H, H-8b), 1.81 (m, 4 H, H-3), 1.47 (m, 4 H, HB). 13C NMR: δ = 145.4 (C-6), 123.2 (C-5), 115.4 (C-4a), 32.0 (CB), 29.9 (CA). Anal. Calcd for C60H102O4 (887.48): C, 81.20; H, 11.58. Found: C, 81.29; H, 11.68.
Pentane derivative 10, light yellow oil/wax, mp approx. 20 °C. 1H NMR: δ = 2.73 (‘t’, 4 H, 3 J = 7.1 Hz, H-4), 2.66 (t, 4 H, HA), 2.13 (s, 6 H, H-7a), 2.06 (s, 6 H, H-8b), 1.83 (m, 4 H, H-3), 1.42 (m, 4 H, HB), 1.35 (m, 2 H, HC). 13C NMR: δ = 145.6 (C-6), 122.6 (C-5), 115.6 (C-4a), 31.3 (CB), 30.8 (CC), 30.0 (CA). Anal. Calcd for C61H104O4 (901.51): C, 81.27; H, 11.63. Found: C, 81.44; H, 11.81.
Hexane derivative 11, yellow, viscous oil. 1H NMR: δ = 2.72 (‘t’, 4 H, 3 J = 6.9 Hz, H-4), 2.66 (t, 4 H, HA), 2.12 (s, 6 H, H-7a), 2.05 (s, 6 H, H-8b), 1.80 (m, 4 H, H-3), 1.46 (m, 4 H, HB), 1.30 (t, 4 H, HC). 13C NMR: δ = 145.4 (C-6), 122.8 (C-5), 115.7 (C-4a), 30.8 (CB), 29.5 (CA), 29.0 (CC). Anal. Calcd for C62H106O4 (915.53): C, 81.34; H, 11.67. Found: C, 81.46; H, 11.90.