References
<A NAME="RG17304ST-1A">1a</A>
Fodor GB.
Colasanti B. In
Alkaloids: Chemical and Biological Perspectives
Vol. 3:
Pelletier SW.
John Wiley;
New York:
1985.
p.1
<A NAME="RG17304ST-1B">1b</A>
Schneider MJ. In Alkaloids: Chemical and Biological Perspectives
Vol. 10:
Pelletier SW.
Pergamon;
New York:
1996.
p.155
<A NAME="RG17304ST-2A">2a</A>
Laschat S.
Dickner T.
Synthesis
2000,
1781
<A NAME="RG17304ST-2B">2b</A>
Jeyaraman R.
Chandrasekaran L.
Chem. Rev.
1983,
83:
379
<A NAME="RG17304ST-3A">3a</A>
Beak P.
Zajdel WJ.
Chem. Rev.
1984,
84:
471
<A NAME="RG17304ST-3B">3b</A>
Meyers AI.
Edwards PD.
Rieker WF.
Bailey TR.
J. Am. Chem. Soc.
1984,
106:
3270
<A NAME="RG17304ST-3C">3c</A>
Gawley RE.
Low E.
Zhang Q.
Harris R.
J. Am. Chem. Soc.
2000,
122:
3344
<A NAME="RG17304ST-4A">4a</A>
Matsumura Y.
Maruoka K.
Yamamoto H.
Tetrahedron Lett.
1982,
23:
1929
<A NAME="RG17304ST-4B">4b</A>
Dhavale DD.
Saha NN.
Desai VN.
J. Org. Chem.
1997,
62:
7482
<A NAME="RG17304ST-4C">4c</A>
Reding MT.
Buchwald SL.
J. Org. Chem.
1998,
63:
6344
<A NAME="RG17304ST-4D">4d</A>
Katritzky AR.
Qiu G.
Yang B.
Steel PJ.
J. Org. Chem.
1998,
63:
6699
<A NAME="RG17304ST-4E">4e</A>
Bonin M.
Romero JR.
Grierson DS.
Husson HP.
Tetrahedron Lett.
1982,
23:
3369
<A NAME="RG17304ST-5A">5a</A>
Grieco PA.
Kaufman MD.
J. Org. Chem.
1999,
64:
6041
<A NAME="RG17304ST-5B">5b</A>
Kranke B.
Hebrault D.
Schultz-Kukula M.
Kunz H.
Synlett
2004,
671
For a review on nitrile anions chemistry see:
<A NAME="RG17304ST-6A">6a</A>
Fleming FF.
Shook BC.
Tetrahedron
2002,
58:
1
<A NAME="RG17304ST-6B">6b</A>
Husson HP.
Royer J.
Chem. Soc. Rev.
1999,
28:
383
<A NAME="RG17304ST-7">7</A>
Le Gall E.
Hurvois JP.
Renaud T.
Moinet C.
Tallec A.
Uriac P.
Sinbandhit S.
Toupet L.
Liebigs Ann. Recl.
1997,
2089
<A NAME="RG17304ST-8A">8a</A>
Malassene R.
Toupet L.
Hurvois JP.
Moinet C.
Synlett
2002,
895
<A NAME="RG17304ST-8B">8b</A>
Malassene R.
Vanquelef E.
Toupet L.
Hurvois JP.
Moinet C.
Org. Biomol. Chem.
2003,
1:
547
<A NAME="RG17304ST-9A">9a</A>
Caubère P.
Derozier N.
Bull. Soc. Chim. Fr.
1969,
1737
<A NAME="RG17304ST-9B">9b</A>
Bhaskar Kanth JV.
Periasamy M.
J. Org. Chem.
1993,
58:
3156
<A NAME="RG17304ST-10A">10a</A>
Wolfe JP.
Wagaw S.
Marcoux JF.
Buchwald SL.
Acc. Chem. Res.
1998,
31:
805
<A NAME="RG17304ST-10B">10b</A>
Ma D.
Xia C.
Org. Lett.
2001,
3:
2583
<A NAME="RG17304ST-11A">11a</A>
Kolis SP.
Gonzales J.
Bright LM.
Harman WD.
Organometallics
1996,
15:
245
<A NAME="RG17304ST-11B">11b</A>
Pape AR.
Kaliappan KP.
Kündig EP.
Chem. Rev.
2000,
100:
2917
<A NAME="RG17304ST-12A">12a</A>
Birch AJ.
Hutchinson EG.
Rao GS.
J. Chem. Soc., Chem. Commun.
1970,
657
<A NAME="RG17304ST-12B">12b</A>
Leonard NJ.
Steinhardt CK.
Lee C.
J. Org. Chem.
1962,
27:
4027
<A NAME="RG17304ST-12C">12c</A>
Rabideau PW.
Marcinov Z. In Organic Reactions
Vol. 42:
Paquette LA.
John Wiley;
New York:
1992.
p.1 ; and references therein
<A NAME="RG17304ST-13">13</A>
General Procedure (Method B) for the Preparation of Amines 4c-f: To 20 mL of liquid NH3 2 mL of anhyd. EtOH and 10 mL of THF containing 350 mg (1.35 mmol) of N-phenyl-2-heptylpiperidine (1e) were successively added. Under a stream of Ar, Li (0.1 g, 10 equiv) was added in
small pieces, upon which the solution became blue. The resulting solution was stirred
at -40 °C for 2 h. After the blue color had disappeared, the mixture was diluted with
10 mL of EtOH. To this mixture H2O (100 mL) was added, and the aqueous phase was extracted with Et2O. The combined organic phases were dried and concentrated in vacuo. The residue was
dissolved in 10 mL of EtOH containing 1 mL of 37% HCl and refluxed for 10 min. EtOH
was distilled, and the solid residue was stirred in a 20% KOH (5 mL) solution and
extracted several times with Et2O. The ethereal layers were combined and dried over MgSO4. The crude product was chromatographed on silica column eluting with Et2O saturated with gaseous NH3 to give 200 mg (81%) of 2-heptylpiperidine(4e) as a slightly yellow oil: 1H NMR (300 MHz, CDCl3): δ = 0.85 (t, 3 H, J = 6.4 Hz), 0.95-1.10 (m, 1 H), 1.20-1.65 (m, 17 H), 1.70-1.80 (m, 1 H), 2.23-2.42
(m, 1 H), 2.10 (td, 1 H, J = 11.70 Hz and 2.85 Hz), 3.05 (dm, 1 H, J = 10.50 Hz). 13C NMR (75 MHz, CDCl3): δ = 14.06, 22.63, 24.94, 25.88, 26.69, 29.25, 29.78, 31.80, 33.04, 37.53, 47.27,
56.91. HRMS: m/z calcd for C12H25N [M+]: 183.1987; found: 183.1987.
<A NAME="RG17304ST-14">14</A>
Beak P.
Lee WK.
J. Org. Chem.
1993,
58:
1109
For recent syntheses of (±)-dihydropinidine see:
<A NAME="RG17304ST-15A">15a</A>
Hong S.
Kawaoka AM.
Marks TJ.
J. Am. Chem. Soc.
2002,
125:
7886
<A NAME="RG17304ST-15B">15b</A>
Loh TP.
Lye PL.
Wang RB.
Sim KK.
Tetrahedron Lett.
2000,
41:
7779
<A NAME="RG17304ST-16">16</A>
Enders D.
Kirchhoff J.
Gerdes P.
Mannes D.
Raabe G.
Runsink J.
Boche G.
Marsch M.
Ahlbrecht H.
Sommer H.
Eur. J. Org. Chem.
1998,
63 ; and references therein
<A NAME="RG17304ST-17">17</A>
Further details of the crystal structure analysis of compound 8g are available on request from the Cambridge Crystallographic Data Centre as supplementary
publication no: 237635. Copies of the data can be obtained free of charge on application
to the director CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 (1223)336033,
e-mail: deposit@ccdc.cam.ac.uk].
For hydride reduction of α-aminonitriles, see:
<A NAME="RG17304ST-18A">18a</A>
Ogura K.
Shimamura Y.
Fujita M.
J. Org. Chem.
1991,
56:
2920
<A NAME="RG17304ST-18B">18b</A>
Sassaman MB.
Tetrahedron
1996,
52:
10835
For dissolving metal reduction of α-aminonitriles see:
<A NAME="RG17304ST-19A">19a</A>
Fabre C.
Welvart Z.
C. R. Acad. Sci.
1970,
1887
<A NAME="RG17304ST-19B">19b</A>
Bunnelle WH.
Shevlin CG.
Tetrahedron Lett.
1989,
30:
4203
For relevant examples see:
<A NAME="RG17304ST-20A">20a</A>
Jefford CW.
Wang JB.
Tetrahedron Lett.
1993,
34:
2911
<A NAME="RG17304ST-20B">20b</A>
Comins DL.
Weglarz M.
J. Org. Chem.
1991,
56:
2506
<A NAME="RG17304ST-20C">20c</A>
Ref.
[4e]
<A NAME="RG17304ST-21">21</A>
Preparation of (±)-Solenopsin A: To 20 mL of liquid NH3 4 mL of anhyd EtOH and 10 mL of THF containing 250 mg (0.76 mmol) of N-phenyl-2-methyl-6-undecylpiperidine (9c, c:t, 35:65) were successively added. Under a stream of Ar, Li (60 mg, 30 equiv) was added
in small pieces, upon which the solution became blue. The resulting solution was stirred
at -40 °C for 2 h. Workup
[13]
gave an oily residue, which was chromatographed on silica (eluent: Et2O saturated with gaseous NH3) to afford cis-10c (48 mg, 25%) and trans-10c (90 mg, 47%). (±)-Solenopsin A: 1H NMR (300 MHz, CDCl3): δ = 0.85 (t, 3 H, J = 6.30 Hz), 1.04 (d, 3 H, J = 6.60 Hz), 1.16-1.66 (m, 27 H), 2.80-2.88 (m, 1 H), 2.97-3.08 (m, 1 H). 13C NMR (75 MHz, CDCl3): δ = 14.07 (CH3-), 19.56, 21.24 (CH3-), 22.63, 26.45, 29.33, 29.62, 29.64 (2 C), 29.78, 30.80, 31.89, 33.00, 34.07, 45.78
(CH-), 50.80 (CH-). HRMS: m/z calcd for C17H35N [M+]: 253.2769; found: 253.2760. (±)-Isosolenopsin A: 1H NMR (300 MHz, CDCl3): δ = 0.87 (t, 3 H, J = 6.04 Hz), 0.94-1.05 (m, 1 H), 1.05 (d, 3 H, J = 6.30 Hz), 1.20-1.65 (m, 25 H), 1.70-1.80 (m, 1 H), 2.42-2.50 (m, 1 H), 2.55-2.66
(m, 1 H). 13C NMR (75 MHz, CDCl3): δ = 14.09, 22.67, 23.10, 24.88, 25.99, 29.34, 29.60, 29.62, 29.66, 29.84, 31.90,
32.28, 34.44, 37.47, 52.46, 57.13. HRMS: m/z calcd for C17H35N [M+]: 253.2769; found: 253.2767.