References
<A NAME="RU04404ST-1A">1a</A>
Gravert DJ.
Janda KD.
Chem. Rev.
1997,
97:
489
<A NAME="RU04404ST-1B">1b</A>
Wentworth P.
Janda KD.
Chem. Commun.
1999,
1917
<A NAME="RU04404ST-1C">1c</A>
Toy PH.
Tanda KD.
Acc. Chem. Res.
2000,
33:
546
<A NAME="RU04404ST-1D">1d</A>
Sun CM.
Comb. Chem. High Throughput Screening
1999,
2:
299
<A NAME="RU04404ST-2">2</A>
Nefzi A.
Otresh JM.
Houghten RA.
Chem. Rev.
1997,
97:
449
<A NAME="RU04404ST-3A">3a</A>
Yeh CM.
Tung CL.
Sun CM.
J. Comb. Chem.
2000,
2:
341
<A NAME="RU04404ST-3B">3b</A>
Zhao X.
Metz WA.
Sieber F.
Janda KD.
Tetrahedron Lett.
1998,
39:
8433
<A NAME="RU04404ST-3C">3c</A>
Blettner CG.
Konig WA.
Quhter G.
Stenzel W.
Schotten T.
Synlett
1999,
307
<A NAME="RU04404ST-3D">3d</A>
Luisa G.
Giorgio M.
Pietro C.
J. Chem. Soc., Perkin Trans. 1
2002,
2504
<A NAME="RU04404ST-3E">3e</A>
Racker R.
Doring K.
Reiser O.
J. Org. Chem.
2000,
65:
6932
<A NAME="RU04404ST-3F">3f</A>
Annunziata R.
Benaglia M.
Cinquini M.
Cozzi F.
Chem.-Eur. J.
2000,
6:
133
<A NAME="RU04404ST-3G">3g</A>
Guo HC.
Ding KL.
Tetrahedron Lett.
2003,
44:
7103
<A NAME="RU04404ST-4A">4a</A>
Weinreb SM. In Comprehensive Organic Synthesis
Vol. 5:
Trost BM.
Fleming I.
Paquette LA.
Pergamon;
Oxford:
1991.
p.401
<A NAME="RU04404ST-4B">4b</A>
Boger DL.
Weinreb SM.
Hetero Diels-Alder Methodology in Organic Synthesis
Academic;
San Diego:
1987.
Chap 2.
<A NAME="RU04404ST-4C">4c</A>
Boger DL.
Weinreb SM.
Hetero Diels-Alder Methodology in Organic Synthesis
Academic;
San Diego:
1987.
Chap 9.
<A NAME="RU04404ST-4D">4d</A>
Qiang LG.
Baine NH.
J. Org. Chem.
1988,
53:
4218
<A NAME="RU04404ST-5A">5a</A>
Katritzky AR.
Rachwal S.
Rachwal B.
Tetrahedron
1996,
52:
15031
<A NAME="RU04404ST-5B">5b</A>
Larock RC.
Yang H.
Pace P.
Tetrahedron Lett.
1998,
39:
1885
<A NAME="RU04404ST-5C">5c</A>
Padwa A.
Brodney MA.
Liu B.
Satake K.
Wu T.
J. Org. Chem.
1999,
64:
3595
<A NAME="RU04404ST-5D">5d</A>
Bunce RA.
Herron DM.
Johnson LB.
Kotturi S.
J. Org. Chem.
2001,
66:
2822
<A NAME="RU04404ST-5E">5e</A>
Zhang W.
Jia X.
Yang L.
Zhao G.
Liu Z.-L.
Tetrahedron Lett.
2002,
43:
9433
<A NAME="RU04404ST-5F">5f</A>
Romuald B.
Patricia M.
Benoit D.
Andre T.
Tetrahedron
1998,
54:
4125
<A NAME="RU04404ST-5G">5g</A>
Spanedda MV.
Hoang VD.
Crousse B.
Bonnet-Delpon D.
Bégué J.-P.
Tetraheron Lett.
2003,
44:
217
<A NAME="RU04404ST-6A">6a</A>
Alexander SK.
Robert WA.
Tetrahedron Lett.
1997,
35:
6163
<A NAME="RU04404ST-6B">6b</A>
Alexander SK.
Leon SI.
Robert WA.
Tetrahedron
1998,
54:
5089
<A NAME="RU04404ST-6C">6c</A>
Alexander SK.
Leon SI.
Alex V.
Robert WA.
Tetrahedron
1998,
54:
7987
<A NAME="RU04404ST-7A">7a</A>
Shang YJ.
Wang YG.
Tetrahedron Lett.
2002,
43:
2247
<A NAME="RU04404ST-7B">7b</A>
Xia M.
Wang YG.
Tetrahedron Lett.
2002,
43:
7703
<A NAME="RU04404ST-7C">7c</A>
Lin XF.
Zhan J.
Wang YG.
Tetrahedron Lett.
2003,
44:
4113
<A NAME="RU04404ST-7D">7d</A>
Wang YG.
Zhang J.
Lin XF.
Ding HF.
Synlett
2003,
1467
<A NAME="RU04404ST-8">8</A>
Typical Spectral Data. For compound 4a: IR (KBr): 3361, 1702 cm-1. 1H NMR (500 MHz, CDCl3): δ = 1.67 (m, 1 H), 2.01 (m, 1 H), 2.46 (m, 1 H), 3.85 (m, 2 H), 3.93 (s, 3 H),
4.04 (m, 1 H), 4.60 (d, J = 5.0 Hz, 1 H), 6.67 (d, J = 8.0 Hz, 1 H), 6.84 (t, J = 7.3 Hz, 1 H), 7.15 (t, J = 7.0 Hz, 1 H), 7.41 (d, J = 6.6 Hz, 1 H), 7.53 (d, J = 8.4 Hz, 2 H), 8.06 (d, J = 8.4 Hz, 2 H). MS (EI): m/z = 309 [M+]. HRMS: m/z [M + H]+ calcd for C19H19NO3: 310.1443; found: 310.1505. For compound 4a′: IR (KBr): 3370, 1713 cm-1. 1H NMR (500 MHz, CDCl3): δ = 1.46 (m, 1 H), 2.15 (m, 1 H), 2.80 (m, 1 H), 3.72 (m, 2 H), 3.93 (s, 3 H),
4.76 (d, J = 3.0 Hz, 1 H), 5.28 (d, J = 7.8 Hz, 1 H), 6.62 (d, J = 7.9 Hz, 1 H), 6.90 (t, J = 7.2 Hz, 1 H), 7.12 (t, J = 7.2 Hz, 1 H), 7.36 (d, J = 7.0 Hz, 1 H), 7.52 (d, J = 8.3 Hz, 2 H), 8.05 (d, J = 8.3 Hz, 2 H). MS (EI): m/z = 309 [M+]. HRMS: m/z [M + H]+ calcd for C19H19NO3: 310.1443; found: 310.1486.
<A NAME="RU04404ST-9">9</A>
Typical Procedure for the Synthesis of 6a: To a solution of PEG-bound aldehyde (0.5 mmol) and aniline (5 mmol) in TFA-CH3CN (1:50, 6 mL) was added 2,3-dihydrofuran (10 mmol). The mixture was stirred at r.t.
for 12 h. The resulting PEG-bound cycloadduct 3a was crystallized from i-PrOH (30 mL) and was separated by filtration and washing. A solution of 3a and DDQ (2 mmol) in CH2Cl2 (5 mL) was stirred at r.t. for 24 h. Upon completion of the reaction, the PEG-bound
furanquinoline 5a was precipitated in i-PrOH (30 mL) and was separated by filtration and washed. The resulting 5a was dissolved in 0.1 N MeONa-MeOH and stirred at r.t. for 6 h to cleave the product
from the PEG support. The detached PEG-OH was precipitated by cold Et2O and filtered. The combined filtrate was evaporated to offer crude product. Pure
6a for structure assay was obtained by flash-column chromatography (EtOAc-n-hexane, 1:5). All the compounds listed in the Table
[2]
gave satisfactory IR, 1H NMR, MS and HRMS data. For compound 6a these data are as follows: IR (KBr): 1719 cm-1. 1H NMR (500 MHz, CDCl3): δ = 3.61 (t, J = 8.9 Hz, 2 H), 3.97 (s, 3 H), 4.95 (t, J = 8.9 Hz, 2 H), 7.53 (m, 1 H), 7.72 (m, 1 H), 8.01 (m, 3 H), 8.20 (m, 3 H). MS (EI):
m/z = 304 [M - H]+. HRMS: m/z [M + H]+ calcd for C19H19NO3: 306.1130; found: 306.1185.