References
1a
Michael JP.
Nat. Prod. Rep.
1997,
14:
605
1b
Balasubramaniam M.
Keay JG. In Comprehensive Heterocyclic Chemistry II
Vol. 5:
Katritzky AR.
Rees CW.
Scriven EFV.
Pergamon Press;
Oxford:
1996.
Chap. 5.06.
p.245
2a
Spicer JA.
Gamage SA.
Atwell GJ.
Finlay GJ.
Baguley BC.
Denny WA.
J. Med. Chem.
1997,
40:
1919
2b
Lyon MA.
Lawrence S.
William DJ.
Jackson YA.
J. Chem. Soc., Perkin Trans. 1
1999,
437
3
Jones G. In Comprehensive Heterocyclic Chemistry II
Vol. 5:
Katritzky AR.
Rees CW.
Scriven EFV.
Pergamon Press;
Oxford:
1996.
Chap. 5.05.
p.167
4a
Tokuyama H.
Sato M.
Ueda T.
Fukuyama T.
Heterocycles
2001,
54:
105
4b
Manske RHF.
Kulka M.
Org. React.
1953,
7:
59
5a
Matsugi M.
Tabusa F.
Minamikawa J-i.
Tetrahedron Lett.
2000,
41:
8523
5b
Ranu BC.
Hajra A.
Jana U.
Tetrahedron Lett.
2000,
41:
531
6a
Schmittel M.
Ammon H.
Eur. J. Org. Chem.
1998,
785
6b
Elderfield RC. In The Chemistry of Heterocyclic Compounds
Vol. 4:
Elderfield RC.
John Wiley and Sons;
Chichester:
1952.
p.45
7a
Ubeda JI.
Villacampa M.
Avendano C.
Synlett
1997,
285 ; and references cited therein
7b
Chang C.-C.
Yan S.-J.
Org. React.
1982,
28:
37
7c Hsiao Y., Rivera N. R., Yasuda N., Hughes D. L., Reider P. J.; Org. Lett.; 2001, 3: 1101; and references cited therein
8
Jones G. In Chemistry of Heterocyclic Compounds
Vol. 32:
Weissberger A.
Taylor EC.
Wiley-Interscience;
London:
1977.
p.181
For related methods see:
9a
Tom NJ.
Ruel EM.
Synthesis
2001,
1351
9b
Baraznenok IL.
Nenajdenko VG.
Balenkova ES.
Eur. J. Org. Chem.
1999,
937
9c
Schlosser M.
Keller H.
Sumida S-i.
Yang J.
Tetrahedron Lett.
1997,
38:
8523
9d
Charpentier P.
Lobregat V.
Levacher V.
Dupas G.
Queguiner G.
Bourguignon J.
Tetrahedron Lett.
1998,
39:
4013
9e
Benoit R.
Dupas G.
Bourguignon J.
Queguiner G.
Synthesis
1987,
1124
Reviews:
10a
Junjappa H.
Ila H.
Asokan CV.
Tetrahedron
1990,
46:
5423
10b
Ila H.
Junjappa H.
Mohanta PK.
Progress in Heterocyclic Chemistry
Vol. 13:
Gribble GW.
Gilchrist TL.
Pergamon;
New York:
2001.
Chap. 1.
p.1
10c
Dieter RK.
Tetrahedron
1986,
42:
3029
11a
Syam Kumar UK.
Ila H.
Junjappa H.
Org. Lett.
2001,
3:
4193
11b
Panda K.
Suresh JR.
Ila H.
Junjappa H.
J. Org. Chem.
2003,
68:
3498
11c
Mahata PK.
Syam Kumar UK.
Sriram V.
Tetrahedron
2003,
59:
2631
12
Mahata PK.
Barun O.
Ila H.
Junjappa H.
Synlett
2000,
1345
13 For our recent quinoline synthesis see: Mahata PK.
Venkatesh C.
Syam Kumar UK.
Ila H.
Junjappa H.
J. Org. Chem.
2003,
68:
3966
14 All new compounds gave satisfactory spectral and analytical data.
15
General Procedure for the Synthesis of Substituted and Fused Quinolines 3a-e, 6, 8, 10: Method A: A solution of 3-bis(methylthio)acrolein (1, 2.0 mmol, 0.3 g) and the appropriate anilines (2.2 mmol) or aryldiamines (1.1 mmol) in glacial HOAc (30 mL) was heated under reflux for 8-10 h (monitored by TLC). It was then cooled, quenched with sat. NaHCO3 solution, extracted with CHCl3 (3 × 30 mL), the combined organic layer was washed with H2O (50 mL) and dried over Na2SO4. Removal of solvent gave crude products, which were purified by column chromatography over silica gel using hexane-EtOAc (9:1) as eluent. Data for compound 3a: Yield 78%; light yellow solid; mp 43-44 °C; Rf = 0.4 (hexane-EtOAc, 9:1). IR (KBr): 2999, 2924, 1593 cm-1. 1H NMR (400 MHz, CDCl3): δ = 2.69 (s, 3 H, SMe), 3.94 (s, 3 H, OMe), 7.07 (dd, J = 2.4, 8.8 Hz, 1 H, ArH), 7.10 (d, J = 8.5 Hz, 1 H, ArH), 7.30 (d, J = 2.4 Hz, 1 H, ArH), 7.58 (d, J = 8.8 Hz, 1 H, ArH), 7.80 (d, J = 8.5 Hz, 1 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 12.98, 55.45, 106.62, 117.74, 118.15, 120.73, 128.58, 134.89, 149.96, 160.17, 160.88. MS (EI): m/z (%) = 205 (100) [M+], 159 (42.8). Anal. Calcd for C11H11NOS (205.28): C, 64.36; H, 5.40; N, 6.82%. Found: C, 64.30; H, 5.45; N, 6.75%.
Data for compound 6: Yield 67%; white solid; mp 125-126 °C; Rf = 0.7 (hexane-EtOAc, 9:1). IR (KBr): 2919, 1611, 1593 cm-1. 1H NMR (400 MHz, CDCl3): δ = 2.77 (s, 3 H, SMe), 2.80 (s, 3 H, SMe), 7.36 (d, J = 8.5 Hz, 1 H, ArH), 7.44 (d, J = 8.5 Hz, 1 H, ArH), 7.83 (d, J = 9.0 Hz, 1 H, ArH), 7.93 (d, J = 8.2 Hz, 2 H, ArH), 9.25 (d, J = 8.5 Hz, 1 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 13.17, 13.31, 120.42, 120.93, 122.47, 123.06, 125.77, 129.32, 132.43, 135.24, 145.41, 148.99, 159.80, 161.44. MS (EI): m/z (%) = 273 (100) [M+ + 1], 258 (10). Anal. Calcd for C14H12N2S2 (272.40): C, 61.73; H, 4.44; N, 10.28%. Found: C, 61.50; H, 4.35; N, 10.42%.
Data for compound 8: Yield 65%; white solid; mp 225-226 °C; Rf = 0.7 (hexane-EtOAc, 9:1). IR (KBr): 3748, 3621, 2924, 1579 cm-1. 1H NMR (400 MHz, CDCl3): δ = 2.86 (s, 6 H, 2 × SMe), 7.41 (d, J = 8.6 Hz, 2 H, ArH), 7.87 (d, J = 8.8 Hz, 2 H, ArH), 8.03 (d, J = 8.6 Hz, 2 H, ArH), 9.25 (d, J = 8.8 Hz, 2 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 13.26, 121.25, 121.77, 124.56, 125.66, 131.18, 135.49, 145.45, 158.96. MS (EI): m/z (%) = 323 (40) [M+ + 1], 273 (10). Anal. Calcd for C18H14N2S2 (322.46): C, 67.05; H, 4.38; N, 8.69%. Found: C, 67.10; H, 4.25; N, 8.42%.
16
Kar GK.
Karmakar AC.
Makur A.
Ray JK.
Heterocycles
1995,
41:
911
17
General Procedure for the Synthesis of Substituted and Fused Quinolines 3f-m, 12: Method B: To a solution of 3-bis(methylthio)acrolein (1, 2.0 mmol, 0.3 g) and respective anilines 2f-m (4.4 mmol) or o-phenylenediamine (11, 3.0 mmol) in CH2Cl2 (20 mL), TFA (6.0 mmol, 0.46 mL) was added at r.t. and the reaction mixture was left for stirring at the same temperature for 5-6 h (monitored by TLC). It was then quenched with sat. NaHCO3 solution (2 × 25 mL), extracted with CH2Cl2 (2 × 25 mL), dried over Na2SO4.The organic layer was distilled off under reduced pressure to give crude iminoenamines which were used as such for further reactions whereas few of the iminoenamines were purified by column chromatography over silica gel using hexane-EtOAc (9:1) as eluent for characterization. The crude iminoenamine (5 mmol) obtained was dissolved in PPA (20 mL) and the reaction mixture was heated with stirring at 90 °C for 6 h (monitored by TLC). It was then cooled, poured into ice-cold H2O (50 mL), extracted with CHCl3 (3 × 50 mL), the combined organic layer was washed with H2O (3 × 50 mL) and dried over Na2SO4.The solvent was distilled off to give crude product, which was purified by column chromatography over silica gel using hexane-EtOAc (9:1) as eluent.
Data for compound 3m: Yield 60%; yellow liquid; Rf = 0.8 (hexane-EtOAc, 8:2). IR (KBr): 2928, 2359, 1723, 1618 cm-1. 1H NMR (400 MHz, CDCl3): δ = 2.66 (s, 3 H, SMe), 3.96 (s, 3 H, OMe), 6.93 (dd, J = 1.4, 8.0 Hz, 1 H, ArH), 7.15-7.26 (m, 3 H, ArH), 7.76 (d, J = 8.8 Hz, 1 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 12.91, 56.12, 108.80, 119.57, 120.90, 125.15, 126.82, 135.26, 139.94, 154.19, 159.04. MS (EI): m/z (%) = 206 (100) [M+ + 1], 191 (20). Anal. Calcd for C11H11NOS (205.28): C, 64.36; H, 5.40; N, 6.82%. Found: C, 64.58; H, 5.32; N, 6.60%.
18
Zirnstein MA.
Staab HA.
Angew. Chem., Int. Ed. Engl.
1987,
26:
460
19 Data for compound 12: Yield 60%; yellow solid; mp 78 °C; Rf = 0.7 (hexane-EtOAc, 8:2). IR (KBr): 3371, 2925, 1628, 1597 cm-1. 1H NMR (400 MHz, CDCl3): δ = 2.51 (s, 6 H, 2 × SMe), 7.25 (d, J = 8.3 Hz, 2 H, ArH), 7.52 (s, 2 H, ArH), 7.70 (d, J = 8.3 Hz, 2 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 21.71, 126.21, 127.20, 127.38, 129.90, 133.87, 135.40. MS (EI): m/z (%) = 273 (70) [M+ + 1], 225 (30). Anal. Calcd for C14H12N2S2 (272.40): C, 61.73; H, 4.44; N, 10.28%. Found: C, 61.58; H, 4.32; N, 10.40%.
20 Data for compound 15a: Yield 88%; white solid; mp 160-161 °C; Rf = 0.5 (hexane-EtOAc, 8:2). IR (KBr): 3015, 2927, 1620, 1302 cm-1. 1H NMR (400 MHz, CDCl3): δ = 3.26 (s, 3 H, OMe), 3.89 (s, 3 H, SO2Me), 7.26 (dd, J = 2.7, 9.0 Hz, 1 H, ArH), 7.40 (d, J = 2.7 Hz, 1 H, ArH), 7.71 (d, J = 9.0 Hz, 1 H, ArH), 7.89 (d, J = 8.3 Hz, 1 H, ArH), 8.24 (d, J = 8.3 Hz, 1 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 39.99, 55.68, 107.38, 114.16, 122.89, 124.68, 128.72, 138.25, 149.02, 157.51, 161.93. MS (EI): m/z (%) = 238 (100) [M+ + 1], 206 (30). Anal. Calcd for C11H11NO3S (237.28): C, 55.68; H, 4.67; N, 5.90%. Found: C, 55.60 H, 4.75; N, 5.85%.
21 Data for compound 17: Yield 80%; white low melting point solid; Rf = 0.6 (hexane-EtOAc, 8:2). IR (KBr): 3232, 2998, 2930, 1613 cm-1. 1H NMR (400 MHz, CDCl3): δ = 3.88 (s, 3 H, OMe), 4.69 (d, J = 5.1 Hz, 2 H, CH2), 5.16 (br s, 1 H, NH), 6.47 (d, J = 8.6 Hz, 1 H, ArH), 6.86 (dd, J = 2.4, 8.6 Hz, 1 H, ArH), 7.08 (d, J = 2.4 Hz, 1 H, ArH), 7.27 (t, J = 7.0 Hz, 1 H, ArH), 7.33 (t, J = 7.0 Hz, 2 H, ArH), 7.39 (d, J = 7.0 Hz, 2 H, ArH), 7.45 (d, J = 8.8 Hz, 1 H, ArH), 7.72 (d, J = 8.8 Hz, 1 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 45.89, 55.33, 105.40, 108.35, 114.23, 118.22, 127.28, 127.63, 128.44, 128.63, 137.21, 139.21, 149.48, 157.20, 161.10. MS (EI): m/z (%) = 265 (100) [M+ + 1]. Anal. Calcd for C17H16N2O (264.33): C, 77.25; H, 6.10; N, 10.60%. Found: C, 77.15; H, 6.20; N, 10.65%.