Subscribe to RSS
DOI: 10.1055/s-2003-42035
Synthesis and Enantioselective Baeyer-Villiger Oxidation of Prochiral Perhydro-pyranones with Recombinant E. coli Producing Cyclohexanone Monooxygenase
Publication History
Publication Date:
08 October 2003 (online)

Abstract
Recombinant whole cells of Escherichia coli overexpressing Acinetobacter sp. NCIMB 9871 cyclohexanone monooxygenase (E.C. 1.14.13.22) have been utilized for the Baeyer-Villiger oxidation of prochiral perhydro-pyranones. The spatial limitations of the enzyme’s active site have been estimated by increasing the chain length of cis-substituents in positions 2 and 6. A diastereoselective synthetic sequence to the required substrate ketones has been developed utilizing high pressure hydrogenation.
Key words
biocatalysis - recombinant whole-cell biotransformation - cyclohexanone monooxygenase - Baeyer-Villiger oxidation - enantioselectivity
- 1
Mihovilovic MD.Müller B.Stanetty P. Eur. J. Org. Chem. 2002, 3711 - 2
Flitsch S.Grogan G. In Enzyme Catalysis in Organic SynthesisDrauz K.Waldmann H. Wiley-VCH; Weinheim: 2002. p.1202-1245 -
3a
Kelly DR. Chim. Oggi 2000, 18: 33 -
3b
Kelly DR. Chim. Oggi 2000, 18: 52 - 4
Roberts SM.Wan PWH. J. Mol. Catal. B: Enzym. 1998, 4: 111 - 5
Willetts A. Trends Biotechnol. 1997, 15: 55 - 6
Walsh CT.Chen Y.-CJ. Angew. Chem. 1988, 100: 342 - 7
Donoghue NA.Trudgill PW. Eur. J. Biochem. 1975, 60: 1 - 8
Iwaki H.Hasegawa Y.Teraoka M.Tokuyama T.Bergeron H.Lau PCK. Appl. Environ. Microbiol. 1999, 65: 5158 - 9
Cheng Q.Thomas SM.Kostichka K.Valentine JR.Nagarajan V. J. Bacteriol. 2000, 182: 4744 - 10
Chen Y.-CJ.Peoples OP.Walsh CT. J. Bacteriol. 1988, 170: 781 - 11
Iwaki H.Hasegawa Y.Lau PCK.Wang S.Kayser MM. Appl. Environ. Microbiol. 2002, 68: 5681 - 12
Brzostowicz PC.Gibson KL.Thomas SM.Blasko MS.Rouviere PE. J. Bacteriol. 2000, 182: 4241 - 13
Seelbach K.Riebel B.Hummel W.Kula M.-R.Tishkov VI.Egorov HM.Wandrey C.Kragl U. Tetrahedron Lett. 1996, 37: 1377 - 14
Gang C.Kayser MM.Mihovilovic MD.Mrstik ME.Martinez CA.Stewart JD. New J. Chem. 1999, 8: 827 - 15 For another recombinant overexpression system for CHMO applied in whole-cell biocatalysis see:
Doig SD.O’Sullivan LM.Patel S.Ward JM.Woodley JM. Enzyme Microb. Technol. 2001, 28: 265 - 16
Donoghue NA.Norris DB.Trudgill PW. Eur. J. Biochem. 1976, 63: 175 - 17
Stewart JD. Curr. Org. Chem. 1998, 2: 195 - 18
Mihovilovic MD.Müller B.Kayser MM.Stewart JD.Stanetty P. Synlett 2002, 703 - 19
Mihovilovic MD.Chen G.Wang S.Kyte B.Rochon F.Kayser MM.Stewart JD. J. Org. Chem. 2001, 66: 733 - 20
Mihovilovic MD.Müller B.Kayser MM.Stanetty P. Synlett 2002, 700 - 21
Mihovilovic MD.Müller B.Schulze A.Stanetty P.Kayser MM. Eur. J. Org. Chem. 2003, 2243 - 22
Mihovilovic MD.Rudroff F.Müller B.Stanetty P. Bioorg. Med. Chem. Lett. 2003, 13: 1479 - 23
Mihovilovic MD.Müller B.Kayser MM.Stewart JD.Fröhlich J.Stanetty P.Spreitzer H. J. Mol. Catal. B: Enzym. 2001, 11: 349 - 24 For the first dynamic kinetic resolution mediated by Baeyer-Villigerases see:
Berezina N.Alphand V.Furstoss R. Tetrahedron: Asymmetry 2002, 13: 1953 - 25
Alphand V.Furstoss R. Tetrahedron: Asymmetry 1992, 3: 379 - 26
Taschner MJ.Peddada L.Cyr P.Chen QZ.Black DJ. NATO ASI Ser., Ser. C 1992, 381: 347 - 27
Kelly DR.Knowles CJ.Mahdi JG.Taylor IN.Wright MA. J. Chem. Soc., Chem. Commun. 1995, 729 - 28
Kelly DR.Knowles CJ.Mahdi JG.Wright MA.Taylor IN.Hibbs DE.Hursthouse MB.Mish’al AK.Roberts SM.Wan PWH.Grogan G.Willets AJ. J. Chem. Soc., Perkin Trans. 1 1995, 2057 - 29
Ottolina G.Pasta P.Carrea G.Colonna S.Dallavalle S.Holland HL. Tetrahedron: Asymmetry 1995, 6: 1375 - 30
Ottolina G.Carrea G.Colonna S.Rückmann A. Tetrahedron: Asymmetry 1996, 7: 1123 - 31
Yates P.Hand ES.Singh P.Roy SK.Still IWJ. J. Org. Chem. 1969, 34: 4046 - 32
Sear RP.Frenkel D. J. Chem. Phys. 1996, 105: 10632 - 33
Yamoto M.Kusunoki Y. Chem. Pharm. Bull. 1981, 29: 1214 - 34
Feist F. Justus Liebigs Ann. Chem. 1890, 257: 253 - 35
Sato M.Kuroda H.Kaneko C.Furuya T. J. Chem. Soc. Chem. Commun. 1994, 687 - 38
Bar R. Trends Biotechnol. 1989, 7: 2 - 39
Taschner MJ.Black DJ. J. Am. Chem. Soc. 1988, 110: 6892
References
Typical procedure for the high pressure hydrogenation:
Precursor 5 dissolved in anhyd MeOH was hydrogenated with Pd/C (10%, 300 mg) in a Büchi steel autoclave under H2 atmosphere (20 bar) for 2 d. The solution was filtered through a bed of Celite® and MeOH was evaporated. In the case of partial ketal formation (6), the crude material was treated with a 5:1 mixture of THF and 0.1 N HCl at r.t. overnight. The solution was washed with NaHCO3, extracted with CH2Cl2, dried over Na2SO4, filtered, and concentrated in vacuo. Pure 1 was obtained after Kugelrohr distillation or flash column chromatography.
cis
-Tetrahydro-2,6-dimethyl-4
H
-pyran-4-one (1a): 42% yield, colorless liquid, bp 50 °C/12mbar (Kugelrohr),
1H NMR (200 MHz, CDCl3): δ = 1.35 (d, J = 6 Hz, 6 H), 2.10-2.45 (m, 4 H), 3.61-3.80 (m, 2 H),
13C NMR(50 MHz, CDCl3): δ = 21.9 (q), 48.8 (t), 72.9 (d), 207.2 (s).
cis
-Tetrahydro-2,6-diethyl-4
H
-pyran-4-one (
1b): 57% yield, colorless liquid, bp 81-83 °C/11mbar (Kugelrohr).
1H NMR (200 MHz, CDCl3): δ = 1.00 (t, J = 7 Hz, 6 H), 1.43-1.81 (m, 4 H), 2.11-2.45 (m, 4 H), 3.39-3.55 (m, 2 H).
13C NMR (50 MHz, CDCl3): δ = 9.6 (q), 29.3 (t), 47.5 (t), 78.2 (d), 207.7 (s).
cis
-Tetrahydro-2,6-dipropyl-4
H
-pyran-4-one (
1c): 56% yield, beige oil.
1H NMR (200 MHz, CDCl3): δ = 0.90 (t, J = 6 Hz, 6 H), 1.30-1.80 (m, 8 H), 2.15-2.40 (m, 4 H), 3.60-3.75 (m, 2 H).
13C NMR (50M Hz, CDCl3): δ = 14.3 (q), 19.0 (t), 38.9 (t), 48.4 (t), 77.1 (d), 207.9 (s).
cis
-Tetrahydro-2,6-bis-(1-methylethyl)-4
H
-pyran-4-one (
1d): 71% yield, colorless oil, bp: 90-95 °C/0.1 mbar (Kugelrohr).
1H NMR (200 MHz, CDCl3): δ = 0.90, 0.95 (2 × d, J = 6 Hz, 2 × 6 H), 1.75 (oct, J = 6 Hz, 2 H), 2.10-2.45 (m, 4 H), 3.20-3.30 (m, 2 H).
13C NMR (50 MHz, CDCl3): δ = 18.2 (t), 33.4 (d), 45.3 (t), 81.7 (d), 208.9 (s).
cis
-Tetrahydro-2,6-dibutyl-4
H
-pyran-4-one (
1e): 35% yield, beige oil.
1H NMR (200 MHz, CDCl3): δ = 0.90-1.00 (m, 6 H), 1.20-1.80 (m, 12 H), 2.10-2.40 (m, 4 H), 3.40-3.55 (m, 2 H).
13C NMR (50 MHz, CDCl3): δ = 14.4 (q), 22.9 (t), 27.9 (t), 36.5 (t), 48.8 (t), 77.4 (d), 208.4 (s).
CH2Cl2 was required to achieve efficient extraction of lactones 2a-c from the fermentation broth.
40Physical and spectroscopic data of lactones 2:
cis
-2,7-Dimethyl-1,4-dioxepan-5-one (
2a): colorless oil.
1H NMR (400 MHz, CDCl3): δ = 1.18 (d, J = 6 Hz, 3 H), 1.29 (d, J = 6 Hz, 3 H), 2.67 (dd, J = 14 Hz, ca 1 Hz, 1 H), 2.92 (dd, J = 14 Hz, 5 Hz, 1 H), 3.79-3.99 (m, 2 H), 4.02 (dd, J = 13 Hz, ca 1 Hz, 1 H), 4.20 (dd, J = 14 Hz, 6 Hz, 1 H).
13C NMR (100 MHz, CDCl3): δ = 18.6 (q), 23.5 (q), 45.6 (t), 71.0 (d), 74.4 (t). 75.5 (d), 173.8 (s).
cis
-2,7-Diethyl-1,4-dioxepan-5-one (
2b): colorless oil.
1H NMR (400 MHz, CDCl3): δ = 0.99 (t, J = 9 Hz, 3 H), 1.00 (t, J = 9 Hz, 3 H), 1.40-1.75 (m, 4 H), 2.69 (dd, J = 16 Hz, ca 1 Hz, 1 H), 2.90 (dd, J = 16 Hz, 10 Hz, 1 H), 3.50-3.67 (m, 2 H), 4.08 (dd, J = 13 Hz, ca 1 Hz, 1 H), 4.21 (dd, J = 13 Hz, 6 Hz, 1 H).
13C NMR (100 MHz, CDCl3): δ = 9.8 (q), 9.9 (q), 25.5 (t), 30.0 (t), 43.8 (t), 73.4 (t), 75.5 (d), 80.3 (d), 173.6 (s).
cis
-2,7-Dipropyl-1,4-dioxepan-5-one (
2c): beige colored oil.
1H NMR (400 MHz, CDCl3): δ = 0.90 (t, J = 7 Hz, 6 H), 1.20-1.60 (m, 8 H), 2.65 (d, J = 13 Hz, 1 H), 2.90 (dd, J = 13 Hz, 8 Hz, 1 H), 3.55-3.70 (m, 4 H), 4.05 (d, J = 13 Hz, 1 H) 4.25 (dd, J = 13 Hz, 8 Hz, 1 H).
13C NMR (100 MHz, CDCl3): δ = 13.6 (q), 18.6 (t), 34.2 (t), 38.9 (t), 44.2 (t), 73.7 (t), 73.9 (d), 78.7 (d), 173.5 (s).