Synlett 2003(13): 1973-1976  
DOI: 10.1055/s-2003-42035
LETTER
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Enantioselective Baeyer-Villiger Oxidation of Prochiral Perhydro-pyranones with Recombinant E. coli Producing Cyclohexanone Monooxygenase

Marko D. Mihovilovic*a, Florian Rudroffa, Wolfgang Kandiollera, Birgit Grötzla, Peter Stanettya, Helmut Spreitzerb
a Vienna University of Technology, Institute for Applied Synthetic Chemistry, Getreidemarkt 9/163, 1060 Vienna, Austria
Fax: +43(1)5880115499; e-Mail: mmihovil@pop.tuwien.ac.at;
b Vienna University, Institute of Pharmaceutical Chemistry, Vienna, Austria
Further Information

Publication History

Received 14 August 2003
Publication Date:
08 October 2003 (online)

Abstract

Recombinant whole cells of Escherichia coli overexpressing Acinetobacter sp. NCIMB 9871 cyclohexanone monooxygenase (E.C. 1.14.13.22) have been utilized for the Baeyer-Villiger oxidation of prochiral perhydro-pyranones. The spatial limitatio­ns of the enzyme’s active site have been estimated by increasin­g the chain length of cis-substituents in positions 2 and 6. A diastereoselective synthetic sequence to the required substrate ketone­s has been developed utilizing high pressure hydrogenation.

    References

  • 1 Mihovilovic MD. Müller B. Stanetty P. Eur. J. Org. Chem.  2002,  3711 
  • 2 Flitsch S. Grogan G. In Enzyme Catalysis in Organic Synthesis   Drauz K. Waldmann H. Wiley-VCH; Weinheim: 2002.  p.1202-1245  
  • 3a Kelly DR. Chim. Oggi  2000,  18:  33 
  • 3b Kelly DR. Chim. Oggi  2000,  18:  52 
  • 4 Roberts SM. Wan PWH. J. Mol. Catal. B: Enzym.  1998,  4:  111 
  • 5 Willetts A. Trends Biotechnol.  1997,  15:  55 
  • 6 Walsh CT. Chen Y.-CJ. Angew. Chem.  1988,  100:  342 
  • 7 Donoghue NA. Trudgill PW. Eur. J. Biochem.  1975,  60:  1 
  • 8 Iwaki H. Hasegawa Y. Teraoka M. Tokuyama T. Bergeron H. Lau PCK. Appl. Environ. Microbiol.  1999,  65:  5158 
  • 9 Cheng Q. Thomas SM. Kostichka K. Valentine JR. Nagarajan V. J. Bacteriol.  2000,  182:  4744 
  • 10 Chen Y.-CJ. Peoples OP. Walsh CT. J. Bacteriol.  1988,  170:  781 
  • 11 Iwaki H. Hasegawa Y. Lau PCK. Wang S. Kayser MM. Appl. Environ. Microbiol.  2002,  68:  5681 
  • 12 Brzostowicz PC. Gibson KL. Thomas SM. Blasko MS. Rouviere PE. J. Bacteriol.  2000,  182:  4241 
  • 13 Seelbach K. Riebel B. Hummel W. Kula M.-R. Tishkov VI. Egorov HM. Wandrey C. Kragl U. Tetrahedron Lett.  1996,  37:  1377 
  • 14 Gang C. Kayser MM. Mihovilovic MD. Mrstik ME. Martinez CA. Stewart JD. New J. Chem.  1999,  8:  827 
  • 15 For another recombinant overexpression system for CHMO applied in whole-cell biocatalysis see: Doig SD. O’Sullivan LM. Patel S. Ward JM. Woodley JM. Enzyme Microb. Technol.  2001,  28:  265 
  • 16 Donoghue NA. Norris DB. Trudgill PW. Eur. J. Biochem.  1976,  63:  175 
  • 17 Stewart JD. Curr. Org. Chem.  1998,  2:  195 
  • 18 Mihovilovic MD. Müller B. Kayser MM. Stewart JD. Stanetty P. Synlett  2002,  703 
  • 19 Mihovilovic MD. Chen G. Wang S. Kyte B. Rochon F. Kayser MM. Stewart JD. J. Org. Chem.  2001,  66:  733 
  • 20 Mihovilovic MD. Müller B. Kayser MM. Stanetty P. Synlett  2002,  700 
  • 21 Mihovilovic MD. Müller B. Schulze A. Stanetty P. Kayser MM. Eur. J. Org. Chem.  2003,  2243 
  • 22 Mihovilovic MD. Rudroff F. Müller B. Stanetty P. Bioorg. Med. Chem. Lett.  2003,  13:  1479 
  • 23 Mihovilovic MD. Müller B. Kayser MM. Stewart JD. Fröhlich J. Stanetty P. Spreitzer H. J. Mol. Catal. B: Enzym.  2001,  11:  349 
  • 24 For the first dynamic kinetic resolution mediated by Baeyer-Villigerases see: Berezina N. Alphand V. Furstoss R. Tetrahedron: Asymmetry  2002,  13:  1953 
  • 25 Alphand V. Furstoss R. Tetrahedron: Asymmetry  1992,  3:  379 
  • 26 Taschner MJ. Peddada L. Cyr P. Chen QZ. Black DJ. NATO ASI Ser., Ser. C  1992,  381:  347 
  • 27 Kelly DR. Knowles CJ. Mahdi JG. Taylor IN. Wright MA. J. Chem. Soc., Chem. Commun.  1995,  729 
  • 28 Kelly DR. Knowles CJ. Mahdi JG. Wright MA. Taylor IN. Hibbs DE. Hursthouse MB. Mish’al AK. Roberts SM. Wan PWH. Grogan G. Willets AJ. J. Chem. Soc., Perkin Trans. 1  1995,  2057 
  • 29 Ottolina G. Pasta P. Carrea G. Colonna S. Dallavalle S. Holland HL. Tetrahedron: Asymmetry  1995,  6:  1375 
  • 30 Ottolina G. Carrea G. Colonna S. Rückmann A. Tetrahedron: Asymmetry  1996,  7:  1123 
  • 31 Yates P. Hand ES. Singh P. Roy SK. Still IWJ. J. Org. Chem.  1969,  34:  4046 
  • 32 Sear RP. Frenkel D. J. Chem. Phys.  1996,  105:  10632 
  • 33 Yamoto M. Kusunoki Y. Chem. Pharm. Bull.  1981,  29:  1214 
  • 34 Feist F. Justus Liebigs Ann. Chem.  1890,  257:  253 
  • 35 Sato M. Kuroda H. Kaneko C. Furuya T. J. Chem. Soc. Chem. Commun.  1994,  687 
  • 38 Bar R. Trends Biotechnol.  1989,  7:  2 
  • 39 Taschner MJ. Black DJ. J. Am. Chem. Soc.  1988,  110:  6892 
36

Typical procedure for the high pressure hydrogenation:
Precursor 5 dissolved in anhyd MeOH was hydrogenated with Pd/C (10%, 300 mg) in a Büchi steel autoclave under H2 atmosphere (20 bar) for 2 d. The solution was filtered through a bed of Celite® and MeOH was evaporated. In the case of partial ketal formation (6), the crude material was treated with a 5:1 mixture of THF and 0.1 N HCl at r.t. overnight. The solution was washed with NaHCO3, extracted with CH2Cl2, dried over Na2SO4, filtered, and concentrated in vacuo. Pure 1 was obtained after Kugelrohr distillation or flash column chromatography.
cis -Tetrahydro-2,6-dimethyl-4 H -pyran-4-one (1a): 42% yield, colorless liquid, bp 50 °C/12mbar (Kugelrohr),
1H NMR (200 MHz, CDCl3): δ = 1.35 (d, J = 6 Hz, 6 H), 2.10-2.45 (m, 4 H), 3.61-3.80 (m, 2 H),
13C NMR(50 MHz, CDCl3): δ = 21.9 (q), 48.8 (t), 72.9 (d), 207.2 (s).
cis -Tetrahydro-2,6-diethyl-4 H -pyran-4-one ( 1b): 57% yield, colorless liquid, bp 81-83 °C/11mbar (Kugelrohr).
1H NMR (200 MHz, CDCl3): δ = 1.00 (t, J = 7 Hz, 6 H), 1.43-1.81 (m, 4 H), 2.11-2.45 (m, 4 H), 3.39-3.55 (m, 2 H).
13C NMR (50 MHz, CDCl3): δ = 9.6 (q), 29.3 (t), 47.5 (t), 78.2 (d), 207.7 (s).
cis -Tetrahydro-2,6-dipropyl-4 H -pyran-4-one ( 1c): 56% yield, beige oil.
1H NMR (200 MHz, CDCl3): δ = 0.90 (t, J = 6 Hz, 6 H), 1.30-1.80 (m, 8 H), 2.15-2.40 (m, 4 H), 3.60-3.75 (m, 2 H).
13C NMR (50M Hz, CDCl3): δ = 14.3 (q), 19.0 (t), 38.9 (t), 48.4 (t), 77.1 (d), 207.9 (s).
cis -Tetrahydro-2,6-bis-(1-methylethyl)-4 H -pyran-4-one ( 1d): 71% yield, colorless oil, bp: 90-95 °C/0.1 mbar (Kugelrohr).
1H NMR (200 MHz, CDCl3): δ = 0.90, 0.95 (2 × d, J = 6 Hz, 2 × 6 H), 1.75 (oct, J = 6 Hz, 2 H), 2.10-2.45 (m, 4 H), 3.20-3.30 (m, 2 H).
13C NMR (50 MHz, CDCl3): δ = 18.2 (t), 33.4 (d), 45.3 (t), 81.7 (d), 208.9 (s).
cis -Tetrahydro-2,6-dibutyl-4 H -pyran-4-one ( 1e): 35% yield, beige oil.
1H NMR (200 MHz, CDCl3): δ = 0.90-1.00 (m, 6 H), 1.20-1.80 (m, 12 H), 2.10-2.40 (m, 4 H), 3.40-3.55 (m, 2 H).
13C NMR (50 MHz, CDCl3): δ = 14.4 (q), 22.9 (t), 27.9 (t), 36.5 (t), 48.8 (t), 77.4 (d), 208.4 (s).

37

CH2Cl2 was required to achieve efficient extraction of lactones 2a-c from the fermentation broth.

40

Physical and spectroscopic data of lactones 2:

cis -2,7-Dimethyl-1,4-dioxepan-5-one ( 2a): colorless oil.
1H NMR (400 MHz, CDCl3): δ = 1.18 (d, J = 6 Hz, 3 H), 1.29 (d, J = 6 Hz, 3 H), 2.67 (dd, J = 14 Hz, ca 1 Hz, 1 H), 2.92 (dd, J = 14 Hz, 5 Hz, 1 H), 3.79-3.99 (m, 2 H), 4.02 (dd, J = 13 Hz, ca 1 Hz, 1 H), 4.20 (dd, J = 14 Hz, 6 Hz, 1 H).
13C NMR (100 MHz, CDCl3): δ = 18.6 (q), 23.5 (q), 45.6 (t), 71.0 (d), 74.4 (t). 75.5 (d), 173.8 (s).
cis -2,7-Diethyl-1,4-dioxepan-5-one ( 2b): colorless oil.
1H NMR (400 MHz, CDCl3): δ = 0.99 (t, J = 9 Hz, 3 H), 1.00 (t, J = 9 Hz, 3 H), 1.40-1.75 (m, 4 H), 2.69 (dd, J = 16 Hz, ca 1 Hz, 1 H), 2.90 (dd, J = 16 Hz, 10 Hz, 1 H), 3.50-3.67 (m, 2 H), 4.08 (dd, J = 13 Hz, ca 1 Hz, 1 H), 4.21 (dd, J = 13 Hz, 6 Hz, 1 H).
13C NMR (100 MHz, CDCl3): δ = 9.8 (q), 9.9 (q), 25.5 (t), 30.0 (t), 43.8 (t), 73.4 (t), 75.5 (d), 80.3 (d), 173.6 (s).
cis -2,7-Dipropyl-1,4-dioxepan-5-one ( 2c): beige colored oil.
1H NMR (400 MHz, CDCl3): δ = 0.90 (t, J = 7 Hz, 6 H), 1.20-1.60 (m, 8 H), 2.65 (d, J = 13 Hz, 1 H), 2.90 (dd, J = 13 Hz, 8 Hz, 1 H), 3.55-3.70 (m, 4 H), 4.05 (d, J = 13 Hz, 1 H) 4.25 (dd, J = 13 Hz, 8 Hz, 1 H).
13C NMR (100 MHz, CDCl3): δ = 13.6 (q), 18.6 (t), 34.2 (t), 38.9 (t), 44.2 (t), 73.7 (t), 73.9 (d), 78.7 (d), 173.5 (s).