References
For recent leading references, see:
1a
Halazy S.
Ehrhard A.
Eggenspiller A.
Berges-Gross V.
Danzin C.
Tetrahedron
1996,
52:
8619
1b
Kawamoto AM.
Campbell MM.
J. Chem. Soc. Perkin Trans. 1
1997,
1249
1c
Caplan NA.
Pogson CI.
Hayes DJ.
Blackburn GM.
J. Chem. Soc. Perkin Trans. 1
2000,
421
1d
Yokomatsu T.
Hayakawa Y.
Kihara T.
Koyanagi S.
Soeda S.
Shimeno H.
Shibuya S.
Bioorg. Med. Chem.
2000,
8:
2571
2a
Levillain J.
Masson S.
Hudson A.
Alberti A.
J. Am. Chem. Soc.
1993,
115:
8444
2b
Alberti A.
Benaglia M.
Della Bona A.
Macciantelli D.
Luccioni-Heuze B.
Masson S.
Hudson A.
J. Chem. Soc., Perkin Trans. 2
1996,
1057
2c
Alberti A.
Benaglia M.
Bonora M.
Borzatta V.
Hudson A.
Macciantelli D.
Masson S.
Polym. Degrad. Stab.
1998,
62:
559
2d
Albert A.
Benaglia B.
Hapiot P.
Hudson A.
Le Coustumer G.
Macciantelli D.
Masson S.
J. Chem. Soc., Perkin Trans. 2
2000,
1908
3a
Bulpin A.
Masson S.
Sene A.
Tetrahedron Lett.
1989,
30:
3415
3b
Bulpin A.
Masson S.
Sene A.
Tetrahederon Lett.
1990,
31:
1151
3c
Bulpin A.
Masson S.
Sene A.
J. Org. Chem.
1992,
57:
4507
3d
Masson S.
Phosphorus, Sulfur Silicon Relat. Elem.
1994,
95:
127
4
Laus M.
Papa R.
Sparnacci K.
Alberti A.
Benaglia M.
Macciantelli D.
Macromolecules
2001,
34:
7269
5a
Heuze B.
Gasparova R.
Heras M.
Masson S.
Tetrahedron Lett.
2000,
41:
7327
5b
Masson S.
Saquet M.
Marchand P.
Tetrahedron
1998,
54:
1523
5c
Makomo H.
Saquet M.
Simeon F.
Masson S.
Aboutjaudet E.
Collignon N.
Gulea-Purcarescu M.
Phosphorus, Sulfur Silicon Relat. Elem.
1996,
110:
445
5d
Mikolajczyk M.
Mikina M.
Graczyk PP.
Balczewski P.
Synthesis
1996,
1232
5e
Bulpin A.
LeRoy-Gourvennec S.
Masson S.
Phosphorus, Sulfur Silicon Relat. Elem.
1994,
89:
119
5f
Makomo H.
Masson S.
Saquet M.
Tetrahedron
1994,
50:
10277
6
Grisley DW.
J. Org. Chem.
1961,
2544
7
Bulpin A.
Masson S.
Sene A.
Tetrahedron Lett.
1989,
30:
3415
8
Zimin MG.
Dvoinishnikova TA.
Konovalova IV.
Pudovik AN.
Zh. Obshch. Khim.
1978,
48:
2790
9a
Blackburn GM.
England DA.
Kolkmann F.
J. Chem. Soc., Chem. Commun.
1981,
930
9b
Blackburn GM.
Eckstein F.
Kent DE.
Perree TD.
Nucleosides Nucleotides
1985,
4:
165
10 For a general overview for the synthesis of phosphono- and phosphinopeptides, see: Kafarski P.
Lejczak B.
In Aminophosphonic and Aminophosphinic Acids, Chemistry and Biological Activity
Kukhar VP.
Hudson HR.
Wiley;
England:
2000.
p.173-203 ; and references cited therein
11 Cs2CO3 offered a higher yield than previously reported, see: Alberti A.
Benaglia M.
Laus M.
Sparnacci K.
J. Org. Chem.
2002,
67:
7911
12 Inverse addition (cesium salt of dialkylphosphite to CS2) was also tried and did not result in a higher yield. Also, formation of secondary products resulting from the reaction between dialkylphosphite salts with the in situ generated cesium phosphonodithiocarboxylate leading to the expected desulfurization forming methylene diphosphonates did not arise as previously described for sodium salts. See: Masson S.
Reviews in Heteroatom Chemistry
Vol. 12:
Oae S.
VCH;
Weinheim:
1995.
p.69-84
13
General Experimental Procedure: To a solution of diethyl phosphite 4 (0.12 g, 0.85 mmol, 1 equiv) in anhyd DMF (5 mL) was added Cs2CO3 (0.83 g, 2.55 mmol, 3 equiv) and TBAI (0.94 g, 2.55 mmol, 3 equiv) with vigorous stirring for 10 min at r.t. under a N2 atmosphere. CS2 (0.15 mL, 2.55 mmol, 3 equiv) was added and the fuchsia colored mixture was stirred for 1 h. After this time period, benzyl bromide (0.30 mL, 2.55 mmol, 3 equiv) was added and stirred for an additional 24 h. The resultant yellow reaction suspension was then poured into water (30 mL) and extracted with EtOAc (3 × 30 mL). The organic layer was washed with water (2 × 30 mL), brine (30 mL), and dried over anhyd Na2SO4. Evaporation of the solvent followed by flash chromatography (hexanes-EtOAc, 9:1) afforded benzyl diethoxyphosphoryldithioformate(5) as a dark red oil (0.25 g, 97%).
1H NMR (270 MHz, CDCl3): δ = 1.36 (t, J
1,2 = 7.6 Hz, 6 H), 4.26 (m, 4 H), 4.46 (s, 2 H), 7.30 (s, 5 H). 13C NMR (100 MHz, CDCl3): δ = 16.20 (d, J
CP = 6.34 Hz), 40.63 (d, J
CP = 2.72 Hz), 64.70 (d, J
CP = 6.94 Hz), 128.00 (s), 128.77 (s), 129.26 (s), 133.53 (s), 228.16 [d, J
CP = 174.54 PC(S)S]; 31P NMR (85 MHz, CDCl3)δ from 30% H3PO4-H2O: -4.57. MS: m/z = 91, 121, 182, 248, 276, 304 (M+). Anal. Calcd for C12H17O3PS2: C, 47.35; H, 5.63. Found: C, 47.42; H, 5.64.
For reviews on the ‘cesium effect’, see:
14a
Ostrowicki A.
Vogtle F. In
Topics in Current Chemistry
Vol. 161:
Weber E.
Vogtle F.
Springer Verlag;
Heidelberg:
1992.
p.37
14b
Galli C.
Org. Prep. Proced. Int.
1992,
24:
287 ; and references therein
14c
Blum Z.
Acta Chem. Scand.
1989,
43:
248
15 Formation of ‘naked anions’ by solvation of cesium ions has been previously postulated and studied extensively: Dijstra G.
Kruizinga WH.
Kellogg RM.
J. Org. Chem.
1987,
52:
4230
For examples of efficient cesium-promoted alkylations, see:
16a
Parrish JP.
Dueno EE.
Kim S.-I.
Jung KW.
Synth. Commun.
2000,
30:
2687
16b
Salvatore RN.
Flanders VL.
Ha D.
Jung KW.
Org. Lett.
2000,
2:
2797
16c
Dueno EE.
Chu F.
Kim S.-I.
Jung KW.
Tetrahedron Lett.
1999,
40:
1843
16d
Salvatore RN.
Nagle AS.
Schmidt SE.
Jung KW.
Org. Lett.
1999,
1:
1893
16e
Salvatore RN.
Shin SI.
Nagle AS.
Jung KW.
J. Org. Chem.
2001,
66:
1035
16f
Salvatore RN.
Sahab S.
Jung KW.
Tetrahedron Lett.
2001,
42:
2055
16g
Salvatore RN.
Schmidt SE.
Shin SI.
Nagle AS.
Worrell JH.
Jung KW.
Tetrahedron Lett.
2000,
41:
9705
16h
Salvatore RN.
Ledger JA.
Jung KW.
Tetrahedron Lett.
2001,
42:
6023
16i
Kim S.-I.
Chu F.
Dueno EE.
Jung KW.
J. Org. Chem.
1999,
64:
4578
16j
Salvatore RN.
Chu F.
Nagle AS.
Kapxhiu EA.
Cross RM.
Jung KW.
Tetrahedron
2002,
58:
3329
16k
Salvatore RN.
Shin SI.
Flanders VL.
Jung KW.
Tetrahedron Lett.
2001,
42:
1799
16l
Salvatore RN.
Nagle AS.
Jung KW.
J. Org. Chem.
2002,
67:
674
TBAI is strongly believed to act as a phase-transfer catalyst in the reaction, therefore, facilitating alkylations producing high product yields. For other phase-transfer catalyzed phosphorus alkylations, see:
17a
Kem KM.
Nguyen NV.
Cross DJ.
J. Org. Chem.
1981,
46:
5188
17b
Weber WP.
Gokel GW.
Phase Transfer Catalysts in Organic Synthesis
Springer Verlag;
New York:
1977.
17c
Starks CM.
Liotta C.
Phase Transfer Catalysis: Principles and Techniques
Academic Press;
New York:
1978.
17d However, we cannot rule out an internal Finkelstein-type reaction for the in-situ generation of alkyl iodides from bromides and chlorides, hence improving yields. Although, the use of alkyl iodides directly, without TBAI gave lower product yields. Therefore, we propose TBAI minimizes or prohibits direct alkylation of the phosphite with an alkyl halide presumably enhancing the rate of CS2 incorporation/and or stabilizing the phosphoryl dithioformate anion through conjugation with the tetrabutylammonium cation. Whereas, the cesium ion tends to weakly coordinate to the conjugate anions, making them more nucleophilic. Prior to addition of the halide, the phosphite and CS2 were reacted to pre-form the incipient dithioformate anion, which is belived to suppress direct alkylation of the phosphite. For a similar example, see ref. for a mechanistic interpretation and for the use of TBABr and other onium salts in the formation of urethanes: Yoshida M.
Hara N.
Okuyama S.
Chem. Commun.
2000,
151
18 Since dithioesters are known to be very good thioacylating agents for amines due to the high electrophilicity of the C=S which is activated by the phosphono-substituent (an electron-withdrawing group), amino bromides 13 and 15 were used as the corresponding hydrobromide salts, since a spontaneous intermolecular reaction to give thioamides or cyclization to the phosphonothiazoline can readily occur. Neither the aforementioned thioacylation reaction (which usually occurs with the alkyl group in the phosphono-moiety) or cyclization was seen. Therefore, we wish to strongly emphasize product structures for aminodithioesters from 13 and 15 were isolated and assigned without ambiguity from the exact mass (MS), 1H, 13C, and 31P NMR spectroscopy.
19
Nagle AS.
Salvatore RN.
Chong BD.
Jung KW.
Tetrahedron Lett.
2000,
41:
3011
20
1H NMR, 13C NMR, 31P NMR and 2D NMR analysis indicate the product as a single diastereomer.
For new biologically active phosphonates, see:
21a
Hildebrand R.
The Role of Phosphonates in Living Systems
CRC Press;
Boca Raton:
1983.
21b
Engel R.
Chem. Rev.
1977,
77:
349
21c
Kafarski P.
Leczak B.
Phosphorus, Sulfur Silicon Relat. Elem.
1991,
63:
193