Abstract
An overview of new concepts, new algorithms, and new computational
protocols directed at synthetic chemists interested in generating
chiral catalysts is presented in this report. A new mapping tool
called stereocartography is described, which allows one to locate
the most stereoinducing region around a proposed catalyst. Extant
QSAR methods including Comparative Molecular Field Analysis (CoMFA)
and a new technique called QM-QSAR are tools for modeling stereoinduction
and for making predictions about whether a proposed chiral catalyst
will be effective or not. Database mining with the intention of
locating unbiased, unique ligand motifs for use in catalysis is
described. Functionality mapping of transition states is introduced
with the idea of locating where around that transition structure,
functional groups assist or interfere with a given reaction coordinate.
Functionality mapping in combination with database mining is shown
to be an effective way to generate new catalysts for asymmetric
induction. Beyond these new tools, more advanced treatments of chirality
are investigated - the relationship between the chirality
content of a catalyst and its ability to induce asymmetry is discussed
along with the concept of distorting a ligand to make it more or
less chiral.
1 Introduction
1.1 Background
1.2 Computational Chemistry
2 New Concepts in Asymmetric Synthesis
2.1 Stereocartography
2.2 Comparative Molecular Field Analysis (CoMFA)
2.3 QM-QSAR
2.4 Database Mining
2.5 Functionality Mapping
2.6 Functionality Mapping + Database Mining
2.7 Chirality Content and Stereoinduction
2.8 Chirality Content and Ligand Distortion
3 Future Prospects
Key words
asymmetric synthesis - chirality - computational
chemistry - chiral catalysts
References
<A NAME="RT01703ST-1A">1a </A> Cover
story and feature article:
‘Chiral Roundup’ Rouhi AM.
Chem. Eng. News
2002,
80(23):
43
<A NAME="RT01703ST-1B">1b </A> Cover story and feature
article, ‘2D Stereoselectivity’:
Jacoby M.
Chem. Eng. News
2002,
80(12):
43
<A NAME="RT01703ST-1C">1c </A> Cover story and feature article, ‘Chiral
Pharmaceuticals’:
Stinson SC.
Chem.
Eng. News
2001,
79(41):
79
<A NAME="RT01703ST-1D">1d </A> ‘Chiral Drugs’:
Stinson SC.
Chem. Eng. News
2000,
78(43):
55
<A NAME="RT01703ST-1E">1e </A> Cover story and feature
report ‘Chiral Drugs: Market Growth in Single-Isomer Forms
Spurs Research Advances’:
Stinson SC.
Chem.
Eng. News
1995,
73(40):
44
<A NAME="RT01703ST-1F">1f </A> Cover story and feature
article, ‘Chiral Drugs: Single-Isomer Products Drive Development
of New Syntheses and Separation Technologies’:
Stinson SC.
Chem. Eng. News
1994,
72(38):
38
<A NAME="RT01703ST-1G">1g </A> Cover story and feature
article, ‘Chiral Drugs: Wave of New Enantiomer Products
Set to Flood Market’:
Stinson SC.
Chem.
Eng. News
1993,
71(39):
38
<A NAME="RT01703ST-2">2 </A>
Comprehensive
Asymmetric Catalysis
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer-Verlag;
New York:
1999.
<A NAME="RT01703ST-3A">3a </A>
Jensen F.
Introduction
to Computational Chemistry
Wiley;
New
York:
1999.
<A NAME="RT01703ST-3B">3b </A>
Leach AR.
Molecular Modeling. Principles
and Applications
2nd Ed.:
Prentice Hall;
Harlow:
2001.
<A NAME="RT01703ST-3C">3c </A>
Schlick T.
Molecular Modeling and Simulation. An Interdisciplinary
Guide
Springer-Verlag;
New York:
2002.
<A NAME="RT01703ST-3D">3d </A>
Cramer CJ.
Essentials of Computational
Chemistry. Theories and Models
Wiley;
Chichester:
2002.
<A NAME="RT01703ST-4">4 </A>
Reviews
in Computational Chemistry
Vol. 1-19:
Lipkowitz KB.
Boyd DB.
Wiley-VCH;
New
York:
1990-2003.
<A NAME="RT01703ST-5">5 </A>
Encyclopedia
of Computational Chemistry
Vol. 1-5:
von Ragué Schleyer P.
Wiley;
Chichester:
1998.
<A NAME="RT01703ST-6">6 </A>
Lipkowitz KB.
D’Hue CA.
Sakamoto T.
Stack JN.
J.
Am. Chem. Soc.
2002,
124:
14255
<A NAME="RT01703ST-7">7 </A>
Kanemasa S.
Oderaotashi Y.
Yamamoto H.
Tanaka J.
Wada E.
Curran DP.
J. Org. Chem.
1997,
62:
6454
<A NAME="RT01703ST-8">8 </A>
Transition
State Modeling for Catalysis, ACS Symposium Series 721
Truhlar DG.
Morokuma K.
American Chemical Society;
Washington
D.C.:
1999.
<A NAME="RT01703ST-9">9 </A>
El-Bahraoui J.
Wiest O.
Feichtinger D.
Plattner DA.
Angew. Chem. Int.
Ed.
2001,
40:
2073
<A NAME="RT01703ST-10">10 </A>
Linde C.
Akermark B.
Norrby P.-O.
Svensson M.
J. Am. Chem. Soc.
1999,
121:
5083
<A NAME="RT01703ST-11">11 </A>
Abashkin YG.
Collins JR.
Burt SK.
Inorg. Chem.
2001,
40:
4040
<A NAME="RT01703ST-12">12 </A>
Brandt P.
Norrby P.-O.
Daly AM.
Gilheany DG.
Chem.-Eur.
J.
2002,
8:
4299
<A NAME="RT01703ST-13A">13a </A>
Kubinyi H.
3D QSAR in Drug Design: Theory
Methods and Applications
ESCOM;
Leiden:
1993.
<A NAME="RT01703ST-13B">13b </A>
QSAR: Hansch Analysis
and Related Approaches
Kubinyi H.
VCH;
Weinheim:
1994.
<A NAME="RT01703ST-13C">13c </A>
Hansch C.
Leo A.
Exploring QSAR Fundamentals and
Applications in Chemistry and Biology
American Chemical
Society;
Washington D. C.:
1995.
<A NAME="RT01703ST-14">14 </A> To our knowledge the first paper
that used QSAR in the area of chiral catalysis was published by
Helquist and Norrby:
Oslob JD.
Åkermark B.
Helquist P.
Norrby P.-O.
Organometallics
1997,
16:
3015
<A NAME="RT01703ST-15">15 </A> Comparative Molecular Field Analysis
(CoMFA): Kubinyi, H.; In Encyclopedia of Computational
Chemistry; von Ragu˛ Schleyer, P.; Wiley: New York,
1998; Vol. 1, 448-460
<A NAME="RT01703ST-16">16 </A>
Lipkowitz KB.
Pradahn M.
J. Org. Chem.,
2003,
68:
4648
<A NAME="RT01703ST-17">17 </A>
Kozlowski MC.
Dixon S.
Panda M.
Lauri G.
J. Am. Chem. Soc.,
2003,
125:
6614
<A NAME="RT01703ST-18">18 </A>
For a complete description of this
methodology see: Dixon, S. L.; Lauri, G.; Merz, K. M. Jr. in preparation.
<A NAME="RT01703ST-19">19 </A>
Dixon SL.
Merz KM.
J. Chem.
Phys.
1997,
107:
879
<A NAME="RT01703ST-20">20 </A>
Kitamura M.
Suga S.
Kawai K.
Noyori R.
J. Am. Chem. Soc.
1986,
108:
6071
<A NAME="RT01703ST-21">21 </A>
Pu L.
Yu H.-B.
Chem. Rev.
2001,
101:
757 ; and references therein
<A NAME="RT01703ST-22">22 </A> See for example reference 2
<A NAME="RT01703ST-23">23 </A>
Kozlowski MC.
Panda M.
J. Mol. Graphics Modell.
2002,
20:
399
<A NAME="RT01703ST-24">24 </A>
Masamune S.
Sata T.
Kim BM.
Wollmann TA.
J. Am. Chem. Soc.
1986,
108:
8279
<A NAME="RT01703ST-25">25 </A>
Short RP.
Masamune S.
J. Am. Chem. Soc.
1989,
11:
1892
<A NAME="RT01703ST-26">26 </A>
Corey EJ.
Imwinkelried R.
Pikul S.
Xiang YB.
J. Am. Chem. Soc.
1989,
11:
5493
<A NAME="RT01703ST-27">27 </A>
Corey EJ.
Yu C.-M.
Kim SS.
J.
Am. Chem. Soc.
1989,
11:
5495
For the design of a boron aldol
chiral auxiliary see:
<A NAME="RT01703ST-28A">28a </A>
Gennari C.
Hewkin CT.
Molinari F.
Bernardi A.
Comotti A.
Goodman JM.
Paterson I.
J.
Org. Chem.
1992,
57:
5173
<A NAME="RT01703ST-28B">28b </A>
Paterson I.
Pure
Appl. Chem.
1992,
64:
1821
<A NAME="RT01703ST-28C">28c </A>
Gennari C.
Moresca D.
Vieth S.
Vulpetti A.
Angew. Chem., Int. Ed. Engl.
1993,
32:
1618
<A NAME="RT01703ST-28D">28d </A>
Bernardi A.
Comotti A.
Gennari C.
Hewkin CT.
Goodman JM.
Schlapbach A.
Paterson I.
Tetrahedron
1994,
50:
1227
<A NAME="RT01703ST-28E">28e </A>
Bernardi A.
Gennari C.
Goodman JM.
Paterson I.
Tetrahedron: Asymmetry
1995,
6:
2613
<A NAME="RT01703ST-28F">28f </A>
Gennari C.
Pure
Appl. Chem.
1997,
69:
507
<A NAME="RT01703ST-28G">28g </A>
Gennari C.
Ceccarelli S.
Piarulli U.
Aboutayab K.
J. Braz. Chem. Soc.
1998,
9:
319
<A NAME="RT01703ST-29">29 </A>
Lauri G.
Bartlett PA.
J. Comput.-Aided
Mol. Design
1994,
8:
51
<A NAME="RT01703ST-30">30 </A>
CAVEAT V2.2, Bartlett, P. A. U.; C.
Berkeley.
<A NAME="RT01703ST-31">31 </A>
Allen FH.
Kennard O.
Taylor R.
Acc.
Chem. Res.
1983,
26:
146
<A NAME="RT01703ST-32">32 </A>
Berman HM.
Westbrook J.
Feng Z.
Gilliland G.
Bhat TN.
Weissig H.
Shindyalov IN.
Bourne PE.
Nucleic Acids Res.
2000,
28:
235
<A NAME="RT01703ST-33">33 </A>
Soderquist JA.
Matos K.
Burgos CH.
Lai C.
Vaquer J.
Medina JR.
Huang SD.
In Organoboranes for Syntheses, ACS Symposium
Series 783
American Chemical Society;
Washington
D.C.:
2001.
p.176
<A NAME="RT01703ST-34">34 </A>
Kozlowski MC.
Panda M.
J. Org. Chem.
2003,
68:
2061
For seminal studies see:
<A NAME="RT01703ST-35A">35a </A>
Miranker A.
Karplus M.
Proteins: Struct. Funct. Genetics
1991,
11:
29
<A NAME="RT01703ST-35B">35b </A>
Hart TN.
Read RJ.
Proteins:
Struct. Funct. Genetics
1992,
13:
206
<A NAME="RT01703ST-36">36 </A> For recent work on transition state
placement in antibody binding sites see:
Tantillo DJ.
Houk KN.
J.
Comput. Chem.
2002,
23:
84
<A NAME="RT01703ST-37A">37a </A>
Roush WR.
Walts AE.
Hoong LK.
J. Am. Chem. Soc.
1985,
107:
8186
<A NAME="RT01703ST-37B">37b </A>
Roush WR.
Banfi L.
J. Am. Chem.
Soc.
1988,
110:
3979
<A NAME="RT01703ST-37C">37c </A>
Roush WR.
Hoong LK.
Palmer MAJ.
Park JC.
J.
Org. Chem.
1990,
55:
4109
<A NAME="RT01703ST-37D">37d </A>
Roush WR.
Hoong LK.
Palmer MAJ.
Straub JA.
Palkowitz AD.
J. Org. Chem.
1990,
55:
4117
<A NAME="RT01703ST-37E">37e </A>
Roush WR.
Ando K.
Powers DB.
Palkowitz A.
Halterman RL.
J. Am. Chem. Soc.
1990,
112:
6339
<A NAME="RT01703ST-38">38 </A>
Ahrendt KA.
Borths CJ.
MacMillan DWC.
J. Am. Chem. Soc.
2000,
122:
4243
<A NAME="RT01703ST-39">39 </A>
Kozlowski MC.
Waters SP.
Skudlarek JW.
Evans CA.
Org.
Lett.
2002,
4:
4391
<A NAME="RT01703ST-40A">40a </A>
Li X.
Schenkel LB.
Kozlowski MC.
Org. Lett.
2000,
2:
875
<A NAME="RT01703ST-40B">40b </A>
Li X.
Yang J.
Kozlowski MC.
Org. Lett.
2001,
3:
1137
<A NAME="RT01703ST-40C">40c </A>
Kozlowski MC.
Li X.
Carroll PJ.
Xu Z.
Organometallics
2002,
21:
4513
<A NAME="RT01703ST-40D">40d </A>
Xie X.
Phuan P.-W..
Angew. Chem. Int. Ed.
2003,
42:
2168
<A NAME="RT01703ST-40E">40e </A>
Li X.
Hewgley JB.
Mulrooney CA.
Yang J.
Kozlowski MC.
J. Org. Chem.
2003,
68:
5500
<A NAME="RT01703ST-40F">40f </A>
Mulrooney CA.
Yang J.
Kozlowski MC.
J. Am. Chem. Soc.,
2003,
125:
6856
<A NAME="RT01703ST-41">41 </A>
New Developments in Molecular
Chirality
Mezey PG.
Kluwer;
Dordrecht:
1991. and
chapters therein
For additional review articles
on quantifying chirality see:
<A NAME="RT01703ST-42A">42a </A>
Buda AB.
Auf der Heyde T.
Mislow K.
Angew. Chem., Int. Ed. Engl.
1992,
31:
989
<A NAME="RT01703ST-42B">42b </A>
Gilat G. In Concepts
in Chemistry: A Contemporary Challenge
Rouvray DH.
Research Studies Press;
Taunton:
1996.
Chap.
10.
p.325-354
<A NAME="RT01703ST-42C">42c </A>
Avnir D.
Katzenelson O.
Keinan S.
Pinsky M.
Pinto Y.
Salomon Y.
Zabrodsky Hel-Or H. In Concepts
in Chemistry: A Contemporary Challenge
Rouvray DH.
Research Studies Press;
Taunton:
1996.
Chap.
10.
p.283-324
<A NAME="RT01703ST-43">43 </A>
Zabrodsky H.
Avnir D.
J. Am. Chem. Soc.
1995,
117:
462
<A NAME="RT01703ST-44">44 </A>
Harada T.
Takeuchi M.
Hatsuda M.
Ueda H.
Oku A.
Tetrahedron:
Asymmetry
1996,
7:
2479
<A NAME="RT01703ST-45">45 </A>
Gao D.
Schefzick S.
Lipkowitz KB.
J.
Am. Chem. Soc.
1999,
121:
9481
<A NAME="RT01703ST-46">46 </A>
Zhang W.
Loebach JL.
Wilson SR.
Jacobsen EN.
J. Am.
Chem. Soc.
1990,
112:
2801
<A NAME="RT01703ST-47">47 </A>
Irie R.
Noda K.
Ito Y.
Matsumoto N.
Katsuki T.
Tetrahedron
Lett.
1990,
31:
7345
<A NAME="RT01703ST-48">48 </A>
Strassner T.
Houk KN.
Org. Lett.
1999,
1:
419
<A NAME="RT01703ST-49">49 </A>
Jacobsen H.
Cavallo L.
Chem.-Eur. J.
2001,
7:
800
<A NAME="RT01703ST-50">50 </A>
Ito YN.
Katsuki T.
Bull. Chem. Soc. Jpn.
1999,
72:
603 ; and references therein to earlier work
<A NAME="RT01703ST-51">51 </A>
Punniyamurthy T.
Irie R.
Katsuki T.
Munetaka A.
Moro-oka Y.
Synlett
1999,
1049
<A NAME="RT01703ST-52">52 </A>
Hashihayata T.
Punniyamurthy T.
Irie R.
Katsuki T.
Akita M.
Moro-oka Y.
Tetrahedron
1999,
55:
14599
<A NAME="RT01703ST-53">53 </A>
Pospisil PJ.
Carsten DH.
Jacobsen EN.
Chem.-Eur. J.
1996,
2:
974
<A NAME="RT01703ST-54">54 </A>
Denmark SE.
Stiff CM.
J. Org. Chem.
2000,
65:
5875
<A NAME="RT01703ST-55">55 </A>
Davies IW.
Deeth RJ.
Larsen RD.
Reider PJ.
Tetrahedron
Lett.
1999,
40:
1233
<A NAME="RT01703ST-56">56 </A>
Davies IW.
Gerena L.
Castonguay L.
Senanayake CH.
Larsen RD.
Verhoeven TR.
Reider PJ.
Chem. Commun.
1996,
1753
<A NAME="RT01703ST-57">57 </A>
Pérollier C.
Pécaut J.
Ramasseul R.
Marchon J.-C.
Inorg. Chem.
1999,
38:
3758
<A NAME="RT01703ST-58">58 </A>
Pécaut J.
Pérollier C.
Ramasseul R.
Marchon J.-C.
C. R. Acad. Sci. Paris Sér.
IIc Chimie/Chemistry
2000,
3:
743
<A NAME="RT01703ST-59">59 </A>
Gazeau S.
Pécaut J.
Haddad R.
Shelnutt JA.
Marchon J.-C.
Eur.
J. Inorg. Chem.
2002,
2956
<A NAME="RT01703ST-60">60 </A>
Saito T.
Yokozawa T.
Ishizaki T.
Moroi T.
Sayo N.
Miura T.
Kumobayashi H.
Adv.
Synth. Catal.
2001,
343:
264
<A NAME="RT01703ST-61">61 </A>
Claver C.
Fernandez E.
Gillon A.
Heslop K.
Hyett DJ.
Martorell A.
Orpen AG.
Pringle PG.
Chem. Commun.
2000,
961
<A NAME="RT01703ST-62">62 </A>
Becker JJ.
White PS.
Gagné MR.
J. Am. Chem. Soc.
2001,
123:
9478
<A NAME="RT01703ST-63">63 </A>
Davis TJ.
Balsells J.
Carroll PJ.
Walsh PJ.
Org. Lett.
2001,
3:
2161
<A NAME="RT01703ST-64">64 </A>
Balsells J.
Betancort JM.
Walsh PJ.
Angew. Chem, Int. Ed.
2000,
39:
3428
<A NAME="RT01703ST-65">65 </A>
Mikami K.
Terada M.
Korenga T.
Matsumoto Y.
Matsukawa S.
Acc.
Chem. Res.
2000,
33:
391
<A NAME="RT01703ST-66">66 </A>
Ringwald M.
Stürmer R.
Brintzinger HH.
J. Am. Chem. Soc.
1999,
121:
1524
<A NAME="RT01703ST-67A">67a </A>
Davies IW.
Gerena L.
Castonguay L.
Senanayake CH.
Larsen RD.
Verhoeven TR.
Reider PJ.
Chem. Commun.
1996,
1753
<A NAME="RT01703ST-67B">67b </A>
Davies IW.
Deeth RJ.
Larsen RD.
Reider PJ.
Tetrahedron
Lett.
1999,
40:
1233
<A NAME="RT01703ST-68">68 </A>
Lipkowitz KB.
Schefzick S.
Avnir D.
J.
Am. Chem. Soc.
2001,
123:
6710
<A NAME="RT01703ST-69">69 </A>
Reviews in Computational
Chemistry
Vol. 6:
Lipkowitz KB.
Boyd DB.
VCH
Publishers;
New York:
1996.
p.v-ix
<A NAME="RT01703ST-70">70 </A>
Martin EJ.
Spellmeyer DC.
Critchlow RE.
Blaney JM. In Reviews
in Computational Chemistry
Vol. 10:
Lipkowitz KB.
Boyd DB.
VCH;
New
York:
1997.
Chap. 2.
p.97
<A NAME="RT01703ST-71">71 </A>
Murcko MA. In Reviews
in Computational Chemistry
Vol. 11:
Lipkowitz KB.
Boyd DB.
Wiley-VCH;
New
York:
1997.
Chap. 1.
p.1
<A NAME="RT01703ST-72">72 </A>
Clark DE.
Murray CW.
Li J. In Reviews
in Computational Chemistry
Vol. 11:
Lipkowitz KB.
Boyd DB.
Wiley-VCH;
New
York:
1997.
Chap. 2.
p.67
<A NAME="RT01703ST-73">73 </A>
Email: david@chem.ch.huji.ac.il.