References
1a
Lin N.-H.
Carrera GM.
Anderson DJ.
J.
Med. Chem.
1994,
37:
3542
1b
Elliott RL.
Ryther KB.
Anderson DJ.
Raszkiewicz JL.
Campbell JE.
Sullivan JP.
Garvey DS.
Bioorg.
Med. Chem. Lett.
1995,
5:
991
2
Sonesson C.
Wilkström H.
Smith MW.
Svensson K.
Carlsson A.
Waters N.
Bioorg. Med.
Chem. Lett.
1997,
7:
241
3a
Ahn KH.
Lee SJ.
Lee C.-H.
Hong CY.
Park TK.
Bioorg. Med. Chem. Lett.
1999,
9:
1379
3b
Gerasimov M.
Marona-Lewicka D.
Kurrasch-Orbaugh DM.
Qandil AM.
Nichols DE.
J. Med. Chem.
1999,
42:
4257
For other syntheses of polysubstituted
pyrrolidines, see:
4a
Lorthiois E.
Marek I.
Normant JF.
J.
Org. Chem.
1998,
63:
2442
4b
Pearson WH.
Stoy P.
Synlett
2003,
903
4c
Pichon M.
Figadère B.
Tetrahedron: Asymmetry
1996,
7:
927 ; and references cited therein
4d
Tsuge O.
Kanemasa S.
Yoshioka M.
J.
Org. Chem.
1988,
53:
1384
5a
Hauser CR.
Taylor HM.
Ledford TG.
J.
Am. Chem. Soc.
1960,
82:
1786
5b
Seebach D.
Angew.
Chem., Int. Ed. Engl.
1969,
8:
639 ; Angew. Chem. 1969, 81, 690
5c
Albright JD.
Tetrahedron
1983,
39:
3207
5d
Enders D.
Kirchhoff J.
Gerdes P.
Mannes D.
Raabe G.
Runsink J.
Boche G.
Marsch M.
Ahlbrecht H.
Sommer H.
Eur.
J. Org. Chem.
1998,
63 ;
and references cited therein
6a
Leete E.
Chedekel MP.
Boden GB.
J. Org. Chem.
1972,
37:
4465
6b
Leete E.
J.
Org. Chem.
1976,
41:
3438
6c For asymmetric syntheses
of 1,4-dicarbonyl compounds using chiral α-aminonitriles,
see: Enders D.
Gerdes P.
Kipphardt H.
Angew. Chem., Int. Ed. Engl.
1990,
29:
179 ; Angew. Chem. 1990, 102, 226
6d See also: Enders D.
Mannes D.
Raabe G.
Synlett
1992,
837
7
Von Miller W.
Plöchl J.
Chem. Ber.
1898,
31:
2718
8a
Bodforss S.
Chem. Ber.
1931,
64:
1111
8b See also: Clark RWL.
Lapworth A.
J.
Chem. Soc.
1907,
91:
694
9
Treibs A.
Derra R.
Liebigs Ann. Chem.
1954,
589:
176
10 According to Treibs and Derra, the
von Miller-Plöchl-synthesis gives good results only for α,N-diaryl-α-aminonitriles; see
ref.
[8]
11 Chiral bicyclic oxy-cyanopyrrolidines
have been used in the asymmetric synthesis of a variety of natural
products. For an overview, see: Husson H.-P.
Royer J.
Chem. Soc. Rev.
1999,
28:
383
See for example:
12a
Mitch CH.
Tetrahedron Lett.
1988,
29:
6831
12b
Yamada S.
Akimoto H.
Tetrahedron Lett.
1969,
10:
3105
13a
Hassan NA.
Bayer E.
Jochims JC.
J. Chem. Soc., Perkin
Trans. 1
1998,
3747 ; and
references cited therein
13b
Crossley R.
Curran ACW.
J. Chem.
Soc., Perkin Trans. 1
1974,
2327
14 Under identical conditions, N-benzylaminoacetonitrile does not react
with crotonaldehyde. Presumably, the basicity of KHMDS is insufficient
in this case.
15
General Procedure
for the Preparation of Pyrrolidines 5a-h: To a solution
of the α-aminonitrile (2.8 mmol) in THF (27 mL) was added
a freshly prepared solution of KHMDS (3.1 mmol, 1.1 equiv) in THF
(5 mL) at -78 °C under argon. After 3
min, a solution of the α,β-unsaturated carbonyl compound
(3.1 mmol, 1.1 equiv) in THF (5 mL) was added and the mixture was
stirred for 30 min. A mixture of EtOH (167 mmol, 60 equiv) and HOAc
(17 mmol, 6 equiv) was added and the mixture was warmed to 0 °C.
After addition of NaBH3CN (8.5 mmol, 3 equiv), the mixture
was stirred at r.t. overnight. The reaction mixture was partitioned
between 1 N NaOH and EtOAc, the organic layer was separated and washed
with a mixture of brine and 1 N NaOH (9:1). The organic layer was
extracted three times with 1 N HCl and the combined aqueous phases
were made alkaline by addition of NaOH. Extraction with CH2Cl2,
drying over Na2SO4 and evaporation of the
solvent in vacuo gave a crude product, which was purified by column
chromatography or preparative TLC. Note: Some of the products were
too lipophilic for an extraction with aq HCl. They were directly purified
by chromatographic methods.
16
Spectroscopic
Data of Compound trans
-5d: 1H NMR (400 MHz,
CDCl3): δ = 7.82-7.86
(m, 3 H), 7.77 (s, br, 1 H,
H-1′), 7.54 (dd,
1 H, J = 8.6
Hz, 1.6 Hz, H-3′), 7.42-7.49 (m, 2 H), 3.32 (d-pseudo-t,
1 H, J
t
= 9
Hz, J
d
= 2.9
Hz, H-5a), 2.75 (d, 1 H, J = 8.6
Hz, H-2), 2.42 (pseudo-q, br, 1 H, J = 9 Hz,
H-5b), 2.17-2.35 (m, 2 H, H-3, H-4a), 2.18 (s, 3 H, NMe),
1.45-1.54 (m, 1 H, H-4b), 0.99 (d, 3 H, J = 6.7
Hz, 3-CH3). Irradiation at δ = 2.75
ppm (H-2) enhances the signals at δ = 7.77 ppm
(H-1′, 3%), 7.54 ppm (H-3′, 1%),
2.42 ppm (H-5b, 1%), 2.18 ppm (NMe, 3%) and 0.99
ppm (3-CH3, 2%). 13C
NMR (100.6 MHz, CDCl3): δ = 139.18
(C-2′), 133.39, 133.09 (C-4a′,C-8a′),
128.16, 127.67, 127.63, 126.99, 125.85, 125.69, 125.49 (C-1′,
C-3′-C-8′), 80.10 (C-2), 55.65 (C-5),
42.47 (C-3), 40.70 (NMe), 31.24 (C-4), 18.23 (3-CH3).
ESI-MS: m/z = 226.2 [M + H]+ (100%). Spectroscopic Data of Compound cis
-5d: 1H
NMR (400 MHz, CDCl3): δ = 7.79-7.86
(m, 3 H), 7.75 (s, 1 H, H-1′), 7.40-7.50 (m, 3
H), 3.47 (d, 1 H, J = 8.2
Hz, H-2), 3.29 (ddd, 1 H, J = 2.2
Hz, 7.8 Hz, 9.4 Hz, H-5a), 2.50 (m, 1 H, H-3), 2.36 (ddd, 1 H, J = 1.4 Hz,
7.8 Hz, 9.4 Hz, H-5b), 2.30 (s, 3 H, NMe), 2.11-2.20 (m,
1 H, H-4a), 1.52-1.63 (m, 1 H, H-4b), 0.60 (d, 3 H, J = 7.0 Hz,
3-CH3). Irradiation at δ = 3.47 ppm
(H-2) enhances the signals at δ = 7.75 ppm (H-1′,
2%), 7.41 ppm (H-3′, 2%), 2.50 (H-3,
3%), 2.36 (H-5b, 1%) and 2.30 (NMe, 2%). 13C
NMR (100.6 MHz, CDCl3): δ = 138.20 (C-2′),
133.36, 132.69 (C-4a′, C-8a′), 127.75, 127.58, 127.39,
127.08, 126.79, 125.75, 125.30 (C-1′, C-3′-C-8′), 74.74
(C-2), 56.26 (C-5), 41.29 (NMe), 37.43 (C-3), 32.67 (C-4), 18.77
(3-CH3). ESI-MS: m/z = 226.2 [M + H]+ (100%).
The assignment of the relative
stereochemistry of the products 5 was either
based on X-ray crystallography, NOE measurements or on comparison
of 1H chemical shifts with literature data:
17a
Yamamoto Y.
Komatsu T.
Maruyama K.
J.
Org. Chem.
1985,
50:
3115
17b
Billet M.
Klotz P.
Mann A.
Tetrahedron
Lett.
2001,
42:
631
18
Pal K.
Behnke ML.
Tong L.
Tetrahedron
Lett.
1993,
34:
6205