Synlett 2003(7): 1034-1036
DOI: 10.1055/s-2003-39314
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Stereoselective Allyl Amine Synthesis via Enantioselective Addition of
Diethylzinc and Sigmatropic Rearrangement; Synthesis of Lentiginosine

Yoshiyasu Ichikawa*, Takashi Ito, Taihei Nishiyama, Minoru Isobe
Laboratory of Organic Chemistry, School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
Fax: +81(52)7894111; e-Mail: ichikawa@agr.nagoya-u.ac.jp;
Further Information

Publication History

Received 6 March 2003
Publication Date:
20 May 2003 (online)

Abstract

A new synthetic method for the preparation of allyl amine derivatives has been developed. The key steps of this method are enantioselective addition of diethylzinc (Soai protocol) and allyl cyanate-to-isocyanate rearrangement. Successful application of this procedure realized the synthesis of lentiginosine (6).

    References

  • 1a Ichikawa Y. Synlett  1991,  238 
  • 1b Ichikawa Y. Osada M. Ohtani I. Isobe M. J. Chem. Soc., Perkin Trans. 1  1997,  1449 
  • 2 Soai K. Ookawa A. Kaba T. Ogawa K. J. Am. Chem. Soc.  1987,  109:  7111 
  • 3 Ichikawa Y. Tsuboi K. Isobe M. J. Chem. Soc., Perkin Trans. 1  1994,  2791 
  • 4a Isolation: Pastuszak I. Molyneux RJ. James LF. Elbein AD. Biochemistry  1990,  29:  188 
  • 4b For the synthetic works, see: Yoda H. Kitayama H. Katagiri T. Takabe K. Tetrahedron: Asymmetry  1993,  4:  1455 
  • 4c Gurjar MK. Ghosh L. Syamala M. Jayasree V. Tetrahedron Lett.  1994,  35:  8871 
  • 4d Nukui S. Sodeoka M. Sasai H. Shibasaki M. J. Org. Chem.  1995,  60:  398 
  • 4e Giovannini R. Marcantoni E. Petrini M. J. Org. Chem.  1995,  60:  5706 
  • 4f Goti A. Cardona F. Brandi A. Synlett  1996,  761 
  • 4g Yoda H. Kawauchi M. Takabe K. Synlett  1998,  137 
  • 4h McCaig AE. Meldrum KP. Wightman RH. Tetrahedron  1998,  54:  9429 
  • 4i Ha D.-C. Yun C.-S. Lee Y. J. Org. Chem.  2000,  65:  621 
  • 4j Yoda H. Katoh H. Ujihara Y. Takabe K. Tetrahedron Lett.  2001,  42:  2509 
  • 4k Rasmussen MO. Delair P. Greene AE. J. Org. Chem.  2001,  66:  5438 
  • 4l Lim SH. Ma S. Beak P. J. Org. Chem.  2001,  66:  9056 
  • 4m Rabiczko J. Urbanczyk-Lipkowska Z. Chmielewski M. Tetrahedron  2002,  58:  1433 
  • 4n Chandra KL. Chandrasekhar M. Singh VK. J. Org. Chem.  2002,  67:  4630 
  • 4o Feng Z.-X. Zhou W.-S. Tetrahedron Lett.  2003,  44:  497 
  • 4p Ayad T. Genisson Y. Baltas M. Gorrichon L. Chem. Commun.  2003,  582 
  • 5a Corey EJ. Palani A. Tetrahedron Lett.  1995,  36:  3485 
  • 5b Frigerio M. Santagostino M. Sputore S. Palmisano G. J. Org. Chem.  1995,  60:  7272 
  • 6 Iida H. Yamazaki N. Kibayashi C. J. Org. Chem.  1987,  52:  3337 
  • 7 In this reaction, it should be noted that we can avoid matched-mismatched problems when R has stererogenic centers (Scheme 1), because asymmetric induction is carried out at the remote position where the effect of R group becomes negligible. In fact, synthesis of the diastereomer 23 was also achieved with Soai protocol simply employing (R)-DPMPM to furnish 23 with 93:7 diastereoselecctivity. Further transformation of 23 using similar procedures in Scheme 2 afforded the allyl carbamate 24 in good yield (Scheme 4). For the matched-mismatched problems, see the reference: Masamune S. Choy W. Peterson JS. Sita LR. Angew. Chem., Int. Ed. Engl.  1984,  24:  1 
  • 9 Fukuyama T. Jow C.-K. Cheung M. Tetrahedron Lett.  1995,  36:  6373 
  • 10a Schwab P. France MB. Ziller JW. Grubbs RH. Angew. Chem., Int. Ed. Engl.  1995,  2039 
  • 10b Grubbs RH. Chang S. Tetrahedron  1988,  4413 
8

The minor isomer produced in the step (89) was removed at this stage by recrystallisation of 14.

11

Spectroscopic data of our synthetic lentiginosine(6): [α] d 27 +1.06 (c 0.47, MeOH). 1H NMR (300MHz, CDCl3): δ = 1.14-1.34 (2 H, m, H-8), 1.38-1.69 (2 H, m, H-6), 1.74-1.97 (2 H, m, H-7), 1.88-1.97 (1 H, m, H-8a), 2.04 (1 H, td, J = 11, 3 Hz, H-5), 2.61 (1 H, dd, J = 11, 7.5 Hz, H-3α), 2.82 (1 H, dd, J = 11, 2 Hz, H-3β), 2.93 (1 H, br d, J = 11 Hz, H-5), 3.64 (1 H, dd, J = 9, 4 Hz, H-1), 4.06 (1 H, ddd, J = 8, 4, 2 Hz, H-2). 13C NMR (75 MHz, CDCl3): δ = 22.8, 23.8, 27.4, 52.4, 60.1, 68.3, 75.5, 82.8.