Synlett 2003(5): 0689-0693
DOI: 10.1055/s-2003-38348
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Diastereoselective Synthesis of 3-Phosphonomethyl-substituted Cyclohexyl- and Cyclohex-2-enylglycines

María Ruiz*, Vicente Ojea*, Susana Conde, José M. Quintela
Departamento de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, Campus A Zapateira s/n, 15071 A Coruña, Spain
Fax: +34(98)1167065; e-Mail: ruizpr@udc.es, ojea@udc.es;
Further Information

Publication History

Received 12 February 2003
Publication Date:
28 March 2003 (online)

Abstract

Regio- and stereoselective 1,6-additions of lithium azaenolate derived from cyclo-[l-tert-Leu-Gly] 2 to (1E)- and (1Z)-cyclohex-2-enylidenemethyl phosphonates 3a,b and 4a,b allow a direct access to optically pure 3-phosphonomethyl-substituted cyclohexyl- and cyclohex-2-enylglycines 13A-C, 14A,B, 15A-C and 16A,B. Ten-membered ‘compact’ and ‘relaxed’ transition-state structures account for the stereochemical outcome of the conjugate additions.

    References

  • 2 CNS Neurotransmitters and Neuromodulators: Glutamate   Stone TW. CRC; Boca Raton, Florida: 1995. 
  • 3 The Ionotropic Glutamate Receptors   Monahan DT. Wenthold RJ. Humana; Totowa, New Jersey: 1997. 
  • 4a Hollmann M. Heinemann S. Annu. Rev. Neurosci.  1994,  17:  31 
  • 4b Matsuda K. Kamiya Y. Matsuda S. Yuzaki M. Mol. Brain Res.  2002,  100:  43 
  • 5 Jane D. Pharmacology of NMDA receptors, in Glutamate and GABA Receptors and Transporters   Egebjerg J. Schousboe A. Krogsgaard-Larsen P. Taylor & Francis; London, UK: 2002.  p.69 
  • 6 Muir KW. Lees KR. Stroke  1995,  26:  503 
  • 7a Baudy RB. Fletcher H. Yardley JP. Zaleska MM. Bramlett DR. Tasse RP. Kowal DM. Katz AH. Moyer JA. Abou-Gharbia M. J. Med. Chem.  2001,  44:  1516 
  • 7b Swahn B.-M. Claesson A. Pelcman B. Besidski Y. Molin H. Sandberg MP. Berge O.-G. Bioorg. Med. Chem. Lett.  1996,  6:  1635 
  • 8a Kidney WA. Abou-Gharbia M. Garrison DT. Schmid J. Kowal DM. Bramlett DR. Miller TL. Zaleska MM. Moyer JA. J. Med. Chem.  1998,  41:  236 
  • 8b Childers WE. Abou-Gharbia M. Moyer JA. Zaleska MM. Drugs Future  2002,  27:  633 
  • 9a Ruiz M. Ojea V. Quintela JM. Guillín JJ. Chem. Commun.  2002,  1600 
  • 9b Fernández MC. Ruiz M. Ojea V. Quintela JM. Tetrahedron Lett.  2002,  43:  5909 
  • 9c Fernández MC. Quintela JM. Ruiz M. Ojea V. Tetrahedron: Asymmetry  2002,  13:  233 
  • 9d Ojea V. Ruiz M. Shapiro G. Pombo-Villar E. J. Org. Chem.  2000,  65:  1984 
  • 9e Ojea V. Conde S. Ruiz M. Fernández MC. Quintela JM. Tetrahedron Lett.  1997,  38:  4311 
  • 10 For the synthesis of d- and l-AP6 based on alkylation of modified Seebach imidazolidinones, see: García-Barradas O. Juaristi E. Tetrahedron: Asymmetry  1997,  8:  1511 
  • 11 Cyclohexylglycines are attractive molecules for the pharmaceutical industry, as they are widely found in natural products and their incorporation into peptide inhibitors renders resistance to peptidases and impart pharmaceutical stability. See: Venkatraman S. Njoroge FG. Girijavallabhan V. McPhail AT. J. Org. Chem.  2002,  67:  2686 
  • 12 For previous Wadsworth-Emmons olefinations of carbonyl compounds with tetraethyl methylenebisphosphonate anions, see: Teulade M.-P. Savignac P. Aboujaoude EE. Liétge S. Collignon N. J. Orgmet. Chem.  1986,  304:  283 
  • 16 Busch K. Groth UM. Kühnle W. Schöllkopf U. Tetrahedron  1992,  48:  5607 
  • 17a Schöllkopf U. Neubauer H.-J. Synthesis  1982,  861 
  • 17b Schöllkopf U. Tetrahedron  1983,  39:  2085 
  • 17c Schöllkopf U. Busse U. Lonsky R. Hinrichs R. Liebigs Ann.  1986,  12:  2150 
  • 17d Groth U. Halfbrodt W. Schöllkopf U. Liebigs Ann.  1992,  4:  351 
  • 19 For previous NBS-mediated lactonizations of 2-amino-4-pentenoic acid derivatives, see: Ohfune Y. Hori K. Sakaitani M. Tetrahedron Lett.  1986,  27:  6079 
  • 20 Ojea V. Ruiz M. Vilar J. Quintela JM. Tetrahedron: Asymmetry  1996,  7:  3335 
  • 22 Svensson M. Humbel S. Froese RDJ. Matsubara T. Sieber S. Morokuma K. J. Phys. Chem.  1996,  100:  19357 
1

New address: S. Conde, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.

13

All new compounds have been isolated in a pure analytical form after chromatography (on SiO2 or RP-18), and their spectral data (IR, FABMS and NMR) were consistent with the proposed structures.

14

The relative configurations of the vinylphosphonates can be deduced from the 4 JC-P observed in their 13C NMR spectra, due to the coupling of C-2′ with the phosphorous atom at β position. Thus, for 6a,b and 3a,b, 4 JC2′-P(trans) values range from 27.2-27.7 Hz, which are characteristic for the vinylphosphonates with a (E)-configuration. Conversely, for 7a,b and 4a,b, with a (Z)-configuration, 4 JC2′-P(cis) values range from 6.4-9.2 Hz.

15

Multigram quantities of (2S)-2-tert-butyl-3,6-dietoxy-2,5-dihydropyrazine were obtained from Novartis Kilo Laboratory. When (2S)-2,5-dihydro-3,6-dimetoxy-2-isopropylpyrazine (available from Fluka and Merck) was used for the reaction with 3a,b and 4a,b, analogous yields and selectivities were obtained. The excess of Schöllkopf’s reagent could be almost completely recovered, and showed no racemization.

18

Selected data for the cyclohexylglycines: 13A: [α]D 23 +10.1 (c = 2.3, H2O); 1H NMR (200 MHz, D2O) δ: 1.06-1.93 (6 H, m); 2.18 (2 H, br d, J = 21.4 Hz, CH2P); 2.55-2.75 (1 H, m, H1′); 3.44 (1 H, d, J = 3.7 Hz, H2); 4.97-5.01 (1 H, m, H2′); 31P NMR (81 MHz, D2O) δ: 22.03; 13C NMR (60 MHz, D2O) δ: 22.5, 26.5, 29.8, 38.2, 39.1 (d, J = 137 Hz), 59.5, 121.5 (d, J = 11.6 Hz), 139.2 (d, J = 10.3 Hz), 175.2. 13B: [α]D 27 +14.5 (c = 1.0, H2O); 1H NMR (200 MHz, D2O) δ: 0.83 (3 H, d, J = 7.3 Hz, CH3); 1.00-1.15 (1 H, m); 1.40-1.55 (1 H, m); 1.70-2.10 (3 H, m); 2.21 (2 H, d, J = 20.7 Hz, H2); 2.62-2.79 (1 H, m), 3.59 (1 H, d, J = 3.1 Hz, H2); 5.01-5.09 (1 H, m, H2′); 31P NMR (81 MHz, D2O) δ: 21.15. 13C: [α]D 27 +11.7 (c = 1.1, H2O); 1H NMR (200 MHz, D2O) δ: 0.83 (3 H, d, J = 7.3 Hz, CH3); 1.00-1.61 (3 H, m); 1.70-2.39 (5 H, m); 3.70 (1 H, d, J = 2.4 Hz, H2); 4.85-4.93 (1 H, m, H2′); 31P NMR (81 MHz, D2O) δ: 21.31. 14A: [α]D 24 +31.5 (c = 2.3, H2O); 1H NMR (200 MHz, D2O) δ: 1.10-1.93 (6 H, m, CH2); 2.05-2.35 (2 H, m, CH2P); 2.61-2.79 (1 H, m, H1′); 3.57 (1 H, d, J = 3.0 Hz, H2); 5.00-5.08 (1 H, m, H2′); 31P NMR (81 MHz, D2O) δ: 19.27. 14B: [α]D 26 +14.7 (c = 1.0, H2O); 1H NMR (200 MHz, D2O) δ: 0.83 (3 H, d, J = 7.3 Hz, CH3); 1.05-2.39 (8 H, m); 3.70 (1 H, d, J = 3.2 Hz, H2); 4.85-4.93 (1 H, m, H2′); 31P NMR (81 MHz, D2O) δ: 21.21. HCl·15A: [α]D 26 -19.1 (c = 0.5, H2O); 1H NMR (200 MHz, D2O) δ: 0.65-0.98 (3 H, m); 1.00-1.22 (1 H, m); 2.55-2.75 (1 H, m, H1Ž); 1.24-1.70 (7 H, m); 1.72-1.92 (1 H, m); 3.71 (1 H, d, J = 4.3 Hz, H2); 31P NMR (81 MHz, D2O) δ: 31.14; 13C NMR (60 MHz, D2O) δ: 25.9, 28.3, 33.4, 33.9 (d, J = 10.3 Hz), 34.6 (d, J = 133 Hz), 36.1 (d, J = 7.9 Hz), 39.2 (d, J = 1.6 Hz), 58.6, 172.4. HCl·15B: [α]D 24 +9.4 (c = 1.0, H2O); 1H NMR (200 MHz, D2O) δ: 0.76 (3 H, d, J = 6.1 Hz, CH3); 0.78-1.27 (3 H, m); 1.41-1.75 (9 H, m); 4.10 (1 H, d, J = 2.4 Hz, H2); 31P NMR (81 MHz, D2O) δ: 30.48. HCl·15C: [α]D 24 +3.4 (c = 1.3, H2O); 1H NMR (200 MHz, D2O) δ: 0.78 (3 H, d, J = 6.8 Hz, CH3); 0.80-1.31 (3 H, m); 1.42-1.78 (9 H, m); 4.12 (1 H, d, J = 2.5 Hz, H2); 31P NMR (81 MHz, D2O) δ: 30.47. HCl·16A: [α]D 24 +10.4 (c = 0.8, H2O); 1H NMR (200 MHz, D2O) δ: 0.60-1.20 (5 H, m); 1.30-1.91 (10 H, m); 3.69 (1 H, d, J = 14.0 Hz, H2); 31P NMR (81 MHz, D2O) δ: 30.35. HCl·16B: [α]D 28 +31.2 (c = 0.7, H2O); 1H NMR (200 MHz, D2O) δ: 0.79 (3 H, d, J = 7.1 Hz, CH3); 0.71-1.33 (3 H, m); 1.43-1.80 (9 H, m); 4.13 (1 H, d, J = 2.9 Hz, H2); 31P NMR (81 MHz, D2O) δ: 30.45.

21

We have utilised the ONIOM method developed by Morokuma et al. [22] as implemented in the Gaussian 98 program package, revision A.11. Density functional theory treatment was reduced to an inner model constituted by lithiated dihydropyrazinone and butadienylphosphonic acid in the presence of two water molecules. Ethyl groups were replaced by methyl ones in the complete models.

23

Most stable disolvated TSs located at the ONIOM[B3LYP/6-31G (d):PM3] level of theory for the addition of 2 to (4R)-4b and (4S)-4b are shown in Figure [2] .