RSS-Feed abonnieren
DOI: 10.1055/s-2003-37377
Rolle von nukleären Rezeptoren beim hepatischen und intestinalen Medikamententransport[1]
Role of nuclear receptors in hepatic and intestinal drug transportPublikationsverlauf
eingereicht: 20.8.2002
akzeptiert: 30.10.2002
Publikationsdatum:
20. Februar 2003 (online)

Zusammenfassung
Die Bioverfügbarkeit von Medikamenten wird wesentlich durch die intestinale Resorption und den hepatischen „first-pass”-Effekt determiniert. Hierbei muss die betreffende Substanz mehrere Membranbarrieren überwinden, um in den systemischen Blutkreislauf zu gelangen. Dazu gehören die luminale (dem Darmlumen zugewandte) und die basolaterale (der Blutseite zugewandte) Membran der Darmepithelzelle. Diejenigen Substanzen, die einem hohen hepatischen „first-pass”-Effekt unterliegen, werden über die basolaterale (sinusoidale) Hepatozytenmembran aufgenommen, in der Leberzelle biotransformiert und über die kanalikuläre (apikale) Membran in die Galle ausgeschieden. Jede der genannten Membranbarrieren besitzt spezialisierte Transportproteine, die den Stofftransport über die Membran bewerkstelligen. Eines der am besten charakterisierten Transporter ist das P-Glykoprotein MDR1 („multidrug resistance gene product”, Gensymbol ABCB1). MDR1 vermittelt in der apikalen Membran von Enterozyten den Rücktransport von Xenobiotika in das Darmlumen, noch bevor sie das Pfortaderblut erreichen. Eine Zunahme der MDR1-Proteinmenge kann die Bioverfügbarkeit von Substanzen, die MDR1-Substrate darstellen, entsprechend reduzieren. Beispiele hierfür sind Digoxin, Ciclosporin und Paclitaxel. Viele Xenobiotika wie zum Beispiel Rifampicin, Phenobarbital, Statine und Johanniskraut sind in der Lage, die MDR1 Expression transkriptionell zu induzieren. Das MDR1-Gen bindet den nukleären Rezeptor PXR („pregnane X receptor”), der nach Aktivierung durch die genannten Liganden die Gentranskription steigert. Weitere durch PXR regulierte Gene sind das Cytochrom P450 3A4, der Digoxintransporter OATP2 so ok?(Slc21a5) der basolateralen Hepatozytenmembran und die Xenobiotika-Effluxpumpe MRP2 (ABCC2) der kanalikulären Hepatozytenmembran. PXR ist somit ein entscheidender „Xenosensor”, der je nach Xenobiotikum die entgiftenden Transport- und Enzymsysteme des Darms und der Leber aktivieren kann.
Summary
Major determinants of the bioavailability of drugs are the degree of intestinal absorption and hepatic first-pass effect. Drugs need to overcome several membrane barriers before reaching the systemic circulation. These include the luminal (facing the intestine) and basolateral (facing the blood) membrane of intestinal epithelial cells. Substances that undergo first-pass metabolism are taken up across the basolateral (sinusoidal) hepatocyte membrane, biotransformed within hepatocytes and excreted across the canalicular (apical) membrane into bile. Each of these membrane barriers possesses an array of specialized transport proteins that mediate substrate transport across the membrane. One of the best characterized transporters is the P-glycoprotein MDR1 (multidrug resistance gene product, gene symbol ABCB1). MDR1 is expressed at the apical surface of enterocytes where it mediates the efflux of xenobiotics into the intestinal lumen before these can access the portal circulation. An increase in MDR1 expression reduces the bioavailability of drugs that are MDR1 substrates. Examples include digoxin, cyclosporin A and paclitaxel. Numerous xenobiotics such as rifampin, phenobarbital, statins and St. John’s wort induce MDR1 transcriptionally. The MDR1 gene binds the nuclear receptor PXR (pregnane X receptor) that induces gene transcription following activation by these ligands. Other PXR regulated genes include cytochrome P450 3A4, the digoxin transporter Oatp2 (Slc21a5) of the basolateral and the xenobiotic efflux pump MRP2 (ABCC2) of the canalicular hepatocyte membrane. PXR is thus an important „xenosensor” that mediates drug induced activation of the detoxifying transport and enzyme systems in liver and intestine.
Literatur
- 1
Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf D J, Suchy F J.
Human bile salt export pump (BSEP) promoter is transactivated by the farnesoid X
receptor/bile acid receptor (FXR/BAR).
J Biol Chem.
2001;
276
28 857-28 865
MissingFormLabel
- 2
Blumberg B, Sabbagh W, Juguilon H. et al .
SXR, a novel steroid and xenobiotic-sensing nuclear receptor.
Genes Dev.
1998;
12
3195-3205
MissingFormLabel
- 3
Chawla A, Repa J J, Evans R M, Mangelsdorf D J.
Nuclear receptors and lipid physiology: opening the X-files.
Science.
2001;
294
1866-1870
MissingFormLabel
- 4
Chawla A, Saez E, Evans R M.
„Don’t know much bile-ology”.
Cell.
2000;
103
1-4
MissingFormLabel
- 5
Cherrington N J, Hartley D P, Li N, Johnson D R, Klaassen C D.
Organ distribution of multidrug resistance proteins 1, 2, and 3 (Mrp1, 2, and 3)
mRNA and hepatic induction of Mrp3 by constitutive androstane receptor activators
in rats.
J Pharmacol Exp Ther.
2002;
300
97-104
MissingFormLabel
- 6
Costet P, Luo Y, Wang N, Tall A R.
Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid
X receptor.
J Biol Chem.
2000;
275
28 240-28 245
MissingFormLabel
- 7
Craddock A L, Love M W, Daniel R W. et al .
Expression and transport properties of the human ileal and renal sodium-dependent
bile acid transporter.
Am J Physiol.
1998;
274
G157-G169
MissingFormLabel
- 8
Denson L A, Auld K L, Schiek D S, McClure M H, Mangelsdorf D J, Karpen S J.
Interleukin-1β suppresses retinoid transactivation of two hepatic transporter genes
involved in bile formation.
J Biol Chem.
2000;
275
8835-8843
MissingFormLabel
- 9
Denson L A, Sturm E, Echevarria W. et al .
The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat
bile acid transporter, ntcp.
Gastroenterology.
2001;
121
140-147
MissingFormLabel
- 10
Dürr D, Stieger B, Kullak-Ublick G A. et al .
St John’s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic
CYP3A4.
Clin Pharmacol Ther.
2000;
68
598-604
MissingFormLabel
- 11
Fitzgerald M L, Moore K J, Freeman M W.
Nuclear hormone receptors and cholesterol trafficking: The orphans find a new home.
J Mol Med.
2002;
80
271-281
MissingFormLabel
- 12
Geick A, Eichelbaum M, Burk O.
Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin.
J Biol Chem.
2001;
276
14 581-14 587
MissingFormLabel
- 13
Greiner B, Eichelbaum M, Fritz P. et al .
The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin.
J Clin Invest.
1999;
104
147-153
MissingFormLabel
- 14
Grober J, Zaghini I, Fujii H. et al .
Identification of a bile acid-responsive element in the human ileal bile acid-binding
protein gene. Involvement of the farnesoid X receptor/9-cis-retinoic acid receptor
heterodimer.
J Biol Chem.
1999;
274
29 749-29 754
MissingFormLabel
- 15
Guo G L, Staudinger J, Ogura K, Klaassen C D.
Induction of rat organic anion transporting polypeptide 2 by pregnenolone-16α-carbonitrile
is via interaction with pregnane X receptor.
Mol Pharmacol.
2002;
61
832-839
MissingFormLabel
- 16
Hagenbuch N, Reichel C, Stieger B. et al .
Effect of phenobarbital on the expression of bile salt and organic anion transporters
of rat liver.
J Hepatol.
2001;
34
881-887
MissingFormLabel
- 17
Johne A, Brockmoller J, Bauer S, Maurer A, Langheinrich M, Roots I.
Pharmacokinetic interaction of digoxin with an herbal extract from St John’s wort
(Hypericum perforatum).
Clin Pharmacol Ther.
1999;
66
338-345
MissingFormLabel
- 18
Jung D, Fried M, Kullak-Ublick G A.
Human apical sodium-dependent bile salt transporter (SLC10A2) gene is regulated by
the peroxisome proliferator-activated receptor α.
J Biol Chem.
2002;
277
30 559-30 566
MissingFormLabel
- 19
Jung D, Podvinec M, Meyer U A. et al .
Human organic anion transporting polypeptide 8 promoter is transactivated by the
farnesoid X receptor/bile acid receptor.
Gastroenterology.
2002;
122
1954-1966
MissingFormLabel
- 20
Kast H R, Goodwin B, Tarr P T. et al .
Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors
pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane
receptor.
J Biol Chem.
2002;
277
2908-2915
MissingFormLabel
- 21
Keppler D, König J.
Hepatic canalicular membrane 5: Expression and localization of the conjugate export
pump encoded by the MRP2 (cMRP/cMOAT) gene in liver.
FASEB J.
1997;
11
509-516
MissingFormLabel
- 22
Kliewer S A, Lehmann J M, Willson T M.
Orphan nuclear receptors: shifting endocrinology into reverse.
Science.
1999;
284
757-760
MissingFormLabel
- 23
Kullak-Ublick G A, Hagenbuch B, Stieger B. et al .
Molecular and functional characterization of an organic anion transporting polypeptide
cloned from human liver.
Gastroenterology.
1995;
109
1274-1282
MissingFormLabel
- 24
Kullak-Ublick G A, Ismair M G, Stieger B. et al .
Organic anion transporting polypeptide B (OATP-B) and its functional comparison with
three other OATPs of human liver.
G astroenterology.
2001;
120
525-533
MissingFormLabel
- 25
Lehmann J M, McKee D D, Watson M A, Willson T M, Moore J T, Kliewer S A.
The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4
gene expression and cause drug interactions.
J Clin Invest.
1998;
102
1016-1023
MissingFormLabel
- 26
Liddle C, Goodwin B.
Regulation of hepatic drug metabolism: role of the nuclear receptors PXR and CAR.
Semin Liver Dis.
2002;
22
115-122
MissingFormLabel
- 27
Makishima M, Okamoto A Y, Repa J J. et al .
Identification of a nuclear receptor for bile acids.
Science.
1999;
284
1362-1365
MissingFormLabel
- 28
Miranda S, Vollrath V, Wielandt A M, Loyola G, Bronfman M, Chianale J.
Overexpression of mdr2 gene by peroxisome proliferators in the mouse liver.
J Hepatol.
1997;
26
1331-1339
MissingFormLabel
- 29
Moore L B, Goodwin B, Jones S A. et al .
St. John’s wort induces hepatic drug metabolism through activation of the pregnane
X receptor.
Proc Natl Acad Sci USA.
2000;
97
7500-7502
MissingFormLabel
- 30
Moore L B, Parks D J, Jones S A. et al .
Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor
share xenobiotic and steroid ligands.
J Biol Chem.
2000;
275
15 122-15 127
MissingFormLabel
- 31
Noé B, Hagenbuch B, Stieger B, Meier P J.
Isolation of a multispecific organic anion and cardiac glycoside transporter from
rat brain.
Proc Natl Acad Sci USA.
1997;
94
10 346-10 350
MissingFormLabel
- 32
Parks D J, Blanchard S G, Bledsoe R K. et al .
Bile acids: natural ligands for an orphan nuclear receptor.
Science.
1999;
284
1365-1368
MissingFormLabel
- 33
Paulusma C C, Kool M, Bosma P J. et al .
A mutation in the human canalicular multispecific organic anion transporter gene
causes the Dubin-Johnson syndrome.
Hepatology.
1997;
25
1539-1542
MissingFormLabel
- 34
Paulusma C C, Oude Elferink R P.
The canalicular multispecific organic anion transporter and conjugated hyperbilirubinemia
in rat and man.
J Mol Med.
1997;
75
420-428
MissingFormLabel
- 35
Piscitelli S C, Burstein A H, Chaitt D, Alfaro R M, Falloon J.
Indinavir concentrations and St John’s wort.
Lancet.
2000;
355
547-548
MissingFormLabel
- 36
Repa J J, Berge K E, Pomajzl C, Richardson J A, Hobbs H, Mangelsdorf D J.
Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver
X receptors α and β.
J Biol Chem.
2002;
277
18 793-18 800
MissingFormLabel
- 37
Repa J J, Turley S D, Lobaccaro J A. et al .
Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers.
Science.
2000;
289
1524-1529
MissingFormLabel
- 38
Ruschitzka F, Meier P J, Turina M, Luscher T F, Noll G.
Acute heart transplant rejection due to Saint John’s wort.
Lancet.
2000;
355
548-549
MissingFormLabel
- 39
Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T.
Human P-glycoprotein transports cyclosporin A and FK506.
J Biol Chem.
1993;
268
6077-6080
MissingFormLabel
- 40
Schuetz E G, Beck W T, Schuetz J D.
Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate
these proteins in human colon carcinoma cells.
Mol Pharmacol.
1996;
49
311-318
MissingFormLabel
- 41
Schuetz E G, Strom S, Yasuda K. et al .
Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone
receptors, transporters, and cytochrome P450.
J Biol Chem.
2001;
276
39 411-39 418
MissingFormLabel
- 42
Staudinger J L, Goodwin B, Jones S A. et al .
The nuclear receptor PXR is a lithocholic acid sensor that protects against liver
toxicity.
Proc Natl Acad Sci USA.
2001;
98
3369-3374
MissingFormLabel
- 43
Synold T W, Dussault I, Forman B M.
The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux.
Nat Med.
2001;
7
584-590
MissingFormLabel
- 44
Taniguchi K, Wada M, Kohno K. et al .
A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed
in cisplatin-resistant human cancer cell lines with decreased drug accumulation.
Cancer Res.
1996;
56
4124-4129
MissingFormLabel
- 45
Urizar N L, Liverman A B, Dodds D T. et al .
A natural product that lowers cholesterol as an antagonist ligand for FXR.
Science.
2002;
296
1703-1706
MissingFormLabel
- 46
Walters H C, Craddock A L, Fusegawa H, Willingham M C, Dawson P A.
Expression, transport properties, and chromosomal location of organic anion transporter
subtype 3.
Am J Physiol.
2000;
279
G1188-G1200
MissingFormLabel
- 47
Wang H, Chen J, Hollister K, Sowers L C, Forman B M.
Endogenous bile acids are ligands for the nuclear receptor FXR/BAR.
Mol Cell.
1999;
3
543-553
MissingFormLabel
- 48
Waxman D J.
P450 gene induction by structurally diverse xenochemicals: central role of nuclear
receptors CAR, PXR, and PPAR.
Arch Biochem Biophys.
1999;
369
11-23
MissingFormLabel
1 Unterstützung: Schweizerischer Nationalfonds (632-062773)
Prof. Dr. med. Gerd A. Kullak-Ublick
Departement für Innere Medizin, Universitätsspital
CH-8091 Zürich
Telefon: +41/1/2554097
Fax: +41/1/2554598
eMail: gerd.kullak@dim.usz.ch