Synlett 2003(3): 0349-0352
DOI: 10.1055/s-2003-37126
LETTER
© Georg Thieme Verlag Stuttgart · New York

Design, Synthesis, and Self-Assembly of Parallel Cyclobolaphile that Contains Four Amide Groups as a Linkage between Polar Head Groups and Hydro­carbon Chain: A Mimetic of Archaeal Membrane Lipid

Kazuhiro Miyawaki, Atsuhiro Harada, Toshiyuki Takagi, Motonari Shibakami*
Institute for Materials and Chemical Process, Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
Fax: +81(298)614547; e-Mail: moto.shibakami@aist.go.jp;
Further Information

Publication History

Received 29 December 2002
Publication Date:
07 February 2003 (online)

Abstract

Chiral 52-membered macrocyclic compound has been synthesized by utilizing intramolecular cyclization under Eglinton conditions [Cu(OAc)2, pyridine]. Three structural features include: (i) two hydrocarbon chains containing diacetylene, (ii) a linkage that is composed of amide group, and (iii) two polar head groups. Self-assembly of this compound in a mixture of chloroform-methanol (1:1) produced organogel. Transmission electron micrograph revealed that UV-irradiated gel is featured by nanosize helicity.

    References

  • 1a Schnur JM. Science  1993,  262:  1669 
  • 1b Spector MS. Price RR. Schnur JM. Adv. Mater.  1999,  11:  337 
  • 1c Schnur JM. Ratna BR. Selinger JV. Singh A. Jyothi G. Easwaran RK. Science  1994,  264:  945 
  • 1d Selinger JV. Schnur JM. Phys. Rev. Lett.  1993,  71:  4091 
  • 1e Spector MS. Selinger JV. Singh A. Rodriguez JM. Price RP. Schnur JM. Langmuir  1998,  14:  3493 
  • 1f Spector MS. Singh A. Messersmith PB. Schnur JM. Nano Lett.  2001,  1:  375 
  • 2a Kushwaha SC. Kates M. Sprott GD. Smith ICP. Biochim. Biophys. Acta  1981,  664:  156 
  • 2b Comita PB. Gagosian RB. Pang H. Costello CE. J. Biol. Chem.  1984,  254:  15234 
  • 2c Eguchi T. Arakawa K. Terachi T. Kakinuma K. J. Org. Chem.  1997,  62:  1924 
  • 2d Eguchi T. Ibaragi K. Kakinuma K. J. Org. Chem.  1998,  63:  2689 
  • 2e Aoki T. Poulter CD. J. Org. Chem.  1985,  50:  5634 
  • 2f Menger FM. Chen XY. Tetrahedron Lett.  1996,  37:  323 
  • 2g Eguchi T. Kano H. Kakinuma K. J. Chem. Soc., Chem. Commun.  1996,  365 
  • 3a

    Amphiphilic molecules containing a polar head group at the end of a hydrophobic segment have been termed; ‘bolaamphiphiles’ or ‘bolaphile’. While amphiphiles having a macrocyclic ring as a hydrophobic segment have been termed ‘macrocyclic bolaamphiphiles’ (see ref. [2f] ), we prefer to adopt the abbreviated and more readily pronounce-able term, ‘cyclobolaphile’.

  • 3b For ‘bolaamphiphiles’ see: Fuhrhop J.-H. Mathiewu J. Angew. Chem., Int. Ed. Engl.  1984,  23:  100 
  • 3c For ‘bolaphiles’ see: Jayasuriya N. Bosak S. Regen SL. J. Am. Chem. Soc.  1990,  112:  5844 
  • 4 On the analogy of the definition of ‘parallel caldarchaeol’ and ‘antiparallel caldarchaeol’ that have a parallel and antiparallel arrangement of glycerol units, respectively, we term cyclobolaphile with a parallel arrangement of glycerol units ‘parallel cyclobolaphile’, and that with an antiparallel arrangement ‘antiparallel cyclobolaphile’, see: Gräther O. Arigoni D. J. Chem. Soc., Chem. Commun.  1995,  405 
  • 5a Miyawaki K. Takagi T. Shibakami M. Synlett  2002,  1326 
  • 5b Miyawaki K. Goto R. Takagi T. Shibakami M. Synlett  2002,  1467 
  • 6a Hanabusa K. Yamada M. Kimura M. Shirai H. Angew. Chem., Int. Ed. Engl.  1996,  35:  1949 
  • 6b Inoue K. Ono Y. Kanekiyo Y. Hanabusa K. Shinkai S. Chem. Lett.  1999,  429 
  • 6c Hanabusa K. Okui K. Karaki K. Koyama T. Shirai H. J. Chem. Soc., Chem. Commun.  1992,  1371 
  • 6d Loos MD. Esch JV. Stokroos I. Kellogg RM. Feringa BL. J. Am. Chem. Soc.  1997,  119:  12675 
  • 6e Rowan AE. Nolte RJM. Angew. Chem. Int. Ed.  1998,  37:  63 
  • 6f Terech P. Furman I. Weiss RG. J. Phys. Chem.  1995,  99:  9558 
  • 6g Terech P. Weiss RG. Chem. Rev.  1997,  97:  3133 
  • 7a Brown DA. London E. J. Membr. Biol.  1998,  164:  103 
  • 7b Brown R. J. Cell. Sci.  1998,  111:  1 
  • 8a Ostendorf M. Dijkink J. Rutjes FPJT. Hiemstra H. Eur. J. Org. Chem.  2000,  115 
  • 8b Avenoza A. Cativiela C. Corzana F. Peregrina JM. Zurbano MM. Synthesis  1997,  1146 
  • 9a Uenishi J. Hiraoka T. Yuyama K. Yonemitsu O. Heterocycles  2000,  52:  719 
  • 9b Taylor EC. Macor JE. Pont JL. Tetrahedron  1987,  43:  5145 
  • 10 Hayashi Y. Kinoshita Y. Hidaka K. Kiso A. Uchibori H. Kimura T. Kiso Y. J. Org. Chem.  2001,  66:  5537 
  • 11 Jacobi PA. Murphree S. Rupprecht F. Zheng W. J. Org. Chem.  1996,  61:  2413 
  • 12a

    Synthesis of 7: A solution of Cu(OAc)2 (138 mg, 0.762 mmol) and pyridine (56 mL) was stirred at 120 °C. To the reaction was then added a solution of 6 (100 mg, 0.076 mmol) in pyridine (5 mL) over 4 h at 120 °C. After cooling to r.t., pyridine was removed under reduced pressure. The resulting solution was allowed to stand at 120 °C for 11 h before the reaction mixture was quenched with sat. citric acid (50 mL), and then extracted with CHCl3 (300 mL × 2). The organic phase was washed with brine, dried (Na2SO4), and concentrated to give a residue. Purification of the residue was done by flash chromatography (SiO2, CHCl3-MeOH, 20:1) to give 55 mg (55%) of 7 as colorless solid.

  • 12b Collins SK. Yap GPA. Fallis AG. Angew. Chem. Int. Ed.  2000,  39:  385 
  • 13a

    All new compounds gave satisfactory analytical and spectral data. Selected physical data are as follows. Compound 7: Stage colorless solid, [α]D 22+4.87 (c 1.80, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 7.63-7.60 (m, 8 H), 7.45-7.41 (m, 12 H), 6.27 (d, J = 7.6 Hz, 2 H), 5.93 (t, J = 5.5 Hz, 2 H), 4.10-4.00 (m, 2 H), 3.79 (dd, J = 10.3, 3.7 Hz, 2 H), 3.62-3.53 (m, 4 H), 3.33-3.29 (m, 2 H), 2.22 (t, J = 6.9 Hz, 8 H), 2.12-2.20 (m, 8 H), 1.60-1.43 (m, 16 H), 1.38-1.30 (m, 8 H), 1.29-1.20 (m, 24 H), 1.06 (s, 18 H) ppm. 13C NMR: δ = 174.53, 173.98, 135.54, 133.07, 132.74, 130.01, 127.92, 127.89, 77.43, 65.35, 63.59, 51.45, 41.94, 36.76, 36.60, 29.22, 29.18, 28.91, 28.76, 28.29, 26.90, 25.64, 25.59, 19.26, 19.17 ppm. LRMS (FAB): m/z = 1310 [M + H]+, 1252 [M - (CH3)3C]+. Compound 1: Stage colorless solid. 1H NMR [500 MHz, CDCl3/CD3OD (1:1,
    v/v)]: δ = 7.37 (t, J = 5.9 Hz, 2 H), 7.10 (t, J = 7.9 Hz, 2 H), 3.73-3.65 (m, 2 H), 3.38 (dd, J = 11.6, 4.0 Hz, 2 H), 3.25 (dd, J = 11.6, 5.5 Hz, 2 H), 3.21-3.13 (m, 2 H), 3.12-3.04 (m, 2 H), 2.03 (t, J = 7.0 Hz, 8 H), 1.97 (t, J = 7.0 Hz, 8 H), 1.42-1.34 (m, 8 H), 1.33-1.26 (m, 8 H), 1.21-1.13 (m, 8 H), 1.12-1.05 (brs, 24 H) ppm. LRMS (FAB): m/z = 834 [M + H]+. Because compounds 7 and 1 were easy to be poly-merized by light, their elemental analyses could not be obtained as seen in analogous diacetylene compounds.

  • 13b Wang G. Hollingsworth RI. Langmuir  1999,  15:  3062 
  • 15a Lopez E. O’Brien DF. Whitesides TH. J. Am. Chem. Soc.  1982,  104:  305 
  • 15b Pan JP. Charych D. Langmuir  1997,  13:  1365 
14

Our synthetic scheme should provide optically pure compound 1. Our reason for this is 2-fold. First, the first step [8a] that can lead to racemization retained the stereochemical configuration of l-serine methyl ester hydrochloride {2: [α]D 21 +4.99 (c 3.55, CHCl3), Lit. [8a] [α]D +4.7 (c 1.2, CHCl3)}. Second, intermediates (2-7) and the desired product (1) do not include carbonyl group that can cause epimerization at the chiral center.