Subscribe to RSS
DOI: 10.1055/s-2003-36227
A Short Enantioselective Synthesis of Naturally Occurring Muscarine Alkaloids from 1,4-Hexadiene
Publication History
Publication Date:
18 December 2002 (online)

Abstract
Short enantioselective syntheses of naturally occurring muscarine alkaloids 1a-d starting from (Z)-1,4-hexadiene (2) and its E-configured isomer 4 have been devised. Key transformations in both sequences were (i) asymmetric dihydroxylation of 1,4-hexadienes 2 and 4 and (ii) application of a novel diastereoselective bromoetherification of (2S,3R)-5-hexene-2,3-diol (3) (40% ee) and (2S,3S)-5-hexene-2,3-diol (5) (90% ee) which was initiated by a vanadium(V)-catalyzed oxidation of bromide using tert-butyl hydroperoxide as primary oxidant.
Key words
bromide - cyclization - muscarine alkaloids - oxidation - tetrahydrofuran - vanadium
- 1a 
             
            Wang P.-C.Joullié MM. In The Alkaloids Vol. 23:Brossi A. Academic Press; New York: 1984. p.327-380
- 1b 
             
            Lewis JR. Nat. Prod. Rep. 1998, 15: 417
- 1c 
             
            Lewis JR. Nat. Prod. Rep. 1998, 15: 371
- 2a 
             
            Eugster CH.Waser PG. Experientia 1954, 10: 298
- 2b 
             
            Eugster CH. Naturwissenschaften 1968, 55: 305
- 3a 
             
            Bollinger H.Eugster CH. Helv. Chim. Acta 1971, 54: 2704
- 3b 
             
            Eugster CH. Helv. Chim. Acta 1956, 39: 1002
- 4 
             
            Kögl F.Salemink CA.Schouten H.Jellinek F. Recl. Trav. Chim. Pays Bas 1957, 76: 109
- 5 
             
            Nitta K.Stadelmann RJ.Eugster CH. Helv. Chim. Acta 1977, 60: 1747
- 6a 
             
            Bollinger H.Eugster CH. Helv. Chim. Acta 1971, 54: 1332
- 6b 
             
            Catalformo P.Eugster CH. Helv. Chim. Acta 1970, 53: 848
- 6c 
             
            List HP.Müller H. Arch. Pharm. (Weinheim, Ger.) 1959, 292: 777
- 6d 
             
            Eugster CH.Müller G. Helv. Chim. Acta 1959, 42: 1189
- 7 
             
            Waser PG. Pharmacol. Res. 1961, 13: 465
- 8 
             
            Wilkinson S. Quart. Rev. Chem. Soc. 1961, 15: 153
- 9 
             
            Eugster CH.Schleusener E. Helv. Chim. Acta 1969, 52: 708
- 10a 
             
            Kang KH.Cha MY.Pae NA.Choi KI.Cho YS.Koh HY.Chung BY. Tetrahedron Lett. 2000, 41: 8137
- 10b 
             
            Takano S.Iwabuchi Y.Ogasawara K. J. Chem. Soc., Chem. Commun. 1989, 1371
- 10c 
             
            Mulzer J.Angermann A.Münch W.Schlichthörl G.Hentzschel A. Liebigs Ann. Chem. 1987, 7
- 10d 
             
            Amouroux R.Gerin B.Chastrette M. Tetrahedron 1985, 41: 5321
- 10e 
             
            Still WC.Schneider JA. J. Org. Chem. 1980, 45: 3375
- 10f 
             
            Hardegger E.Lohse F. Helv. Chim. Acta 1957, 40: 244
- 11a 
             
            Norrild JC.Pedersen C. Synthesis 1997, 1128
- 11b 
             
            Popsavin V.Beric O.Csanádi J.Popsavin M.Miljkovic D. J. Serb. Chem. Soc. 1995, 60: 625
- 11c 
             
            Chmielewski M.Guzik P.Hintze B.Daniewski WM. J. Org. Chem. 1985, 50: 5360
- 11d 
             
            Fronza G.Fuganti C.Grasselli P. Tetrahedron Lett. 1978, 3941
- 11e 
             
            Corrodi H.Hardegger E.Kögl F. Helv. Chim. Acta 1957, 40: 2454
- 12a 
             
            Angle SR.El-Said NA. J. Am. Chem. Soc. 2002, 124: 3608
- 12b 
             
            Popsavin V.Beric O.Popsavin M.Radic L.Csanádi J.Cirin-Novta V. Tetrahedron 2000, 56: 5929
- 12c 
             
            Popsavin V.Beric O.Popsavin M.Lajsic S.Miljkovic D. Carbohydr. Lett. 1998, 3: 1
- 13 
             
            Popsavin V.Beric O.Popsavin M.Csanádi J.Miljkovic D. Carbohydr. Res. 1995, 269: 343
- 14 
             
            De Amici M.Dallanoce C.De Micheli C.Grana E.Barbieri A.Ladinsky H.Schiavi G.Zonta F. J. Med. Chem. 1992, 35: 1915 ; and references cited therein
- 15a From l-arabinose:  
            Hardegger E.Lohse F. Helv. Chim. Acta 1957, 40: 2383
- 15b From l-rhamnose:  
            Mantell SJ.Fleet GWJ.Brown D. J. Chem. Soc., Perkin Trans. 1 1992, 3023
- 15c From 2-deoxy-l-ribose:  
            Pochet S.Huynh-Dinh T. J. Org. Chem. 1982, 47: 193
- 15d From d-mannose:  
            Mubarak AM.Brown DM. J. Chem. Soc., Perkin Trans. 1 1982, 809
- 15e 
             
            Hardegger E.Furter H.Kiss J. Helv. Chim. Acta 1958, 41: 2401
- 15f From d-glucosamine:  
            Cox HC.Hardegger E.Kögl F.Liechti P.Lohse F.Salemink CA. Helv. Chim. Acta 1958, 41: 229
- For examples:
- 16a 
             
            Knight DW.Shaw D.Fenton G. Synlett 1994, 295
- 16b 
             
            Chan TH.Li CJ. Can. J. Chem. 1992, 70: 2726
- 16c 
             
            Amouroux R.Gerin B.Chastrette M. Tetrahedron Lett. 1982, 23: 4341
- 18a AD-mix-α®: 
            K2[OsO2(OH)4], 
            K2CO3, K3[Fe(CN)6], 
            1,4-bis(9-O-dihydroquinyl)phthalazine; 
            AD-mix-β®: K2[OsO2(OH)4], 
            K2CO3, K3[Fe(CN)6], 
            1,4-bis(9-O-dihydroquinidyl)phthalazine. 
            For a review on the AD reaction, see:  
            Kolb HC.VanNieuwenhze MS.Sharpless KB. Chem. Rev. 1994, 94: 2483
- 18b For enantioselective dihydroxylations 
            of polyenes see:  
            Becker H.Soler MA.Sharpless KB. Tetrahedron 1995, 51: 1345
- 19 
             
            Paquette LA.Mitzel TM. J. Org. Chem. 1996, 61: 8799
- 21 
             
            Wang L.Sharpless KB. J. Am. Chem. Soc. 1992, 114: 7568
- 22 
             
            Xu D.Crispino GA.Sharpless KB. J. Am. Chem. Soc. 1992, 114: 7570
- 23 
             
            Hale KJ.Lennon JA.Manaviazar S.Javaid MH.Hobbs CJ. Tetrahedron Lett. 1995, 36: 1359
- 24 
             
            Sharpless KB.Amberg W.Bennani YL.Crispino GA.Hartung J.Jeong K.-S.Kwong H.-L.Morikawa K.Whang Z.-M.Xu D.Zhang X.-L. J. Org. Chem. 1992, 57: 2768Reference Ris Wihthout Link
- 26 
             
            Mimoun H.Mignard M.Brechot P.Saussine L. J. Am. Chem. Soc. 1986, 108: 3711
- 27 
             
            Hartung J.Schmidt P. Synlett 2000, 367
- 28 Preparation of tetrahydrofurans 6a and 6b (from 3) and 6c and 6d (from 5) was 
            performed according to the following general procedure: A solution 
            of (2S,3S)-hexene-2,3-diol(5) (116 mg, 1.00 mmol), [VOL(EtO)(EtOH)] (L = N-(2-hydroxyphenyl)salicylideneimine 
            dianion) (36.9 mg, 0.10 mmol),25-27 pyridinium 
            hydrobromide (176 mg, 1.10 mmol) and tert-butyl 
            hydroperoxide (200 µL, 5.5 M in nonane, 1.10 mmol) in CHCl3 (10 
            mL) was stirred at 20 °C until diol 5 has been 
            completely consumed (˜ 6 h). Afterwards, the reaction mixture 
            was concentrated under reduced pressure (40 °C/250 
            mbar) and the crude product was purified by filtration through a 
            short pad Al2O3(Et2O) to afford 
            an oil which was subjected to a Kugelrohr-distillation (130 °C/20 
            mbar). Yield: 113 mg (0.058 mmol, 59%), 6c:6d = 27:73, colorless liquid. 
            MS (70 eV, EI), m/z (%): 
            242/240(6) [M+], 
            160(15) [M+ - HBr], 
            147(100) [M+ - CH2Br], 
            131(41) [C10H11
            +], 129(23) [M+ - CH2Br - H2O], 
            117(16) [C9H9
            +], 
            91(66) [C7H7
            +], 
            77(10) [C6H5
            +], 
            41(12) [C3H5
            +]. 
            C11H13BrO (241.1) calc. C 54.80 H 5.85 found 
            C 54.51 H 5.31. Separation of diastereomers 6c and 6d was achieved by column chromatography [SiO2, 
            petroleum ether/Et2O, 1:2 (v/v)]. (2S,3S,5S)-5-Bromomethyl-3-hydroxy-2-methyltetra-hydrofuran 
            (6c): Rf = 0.50 (petroleum 
            ether/Et2O, 1:2 (v/v); [α]D
            25 = -7.3 
            (c = 0.8, CHCl3); 1H 
            NMR (250 MHz): δ = 1.30 (d, 3 H, 3
            J = 6.4 Hz, 6-H), 1.83 (s, 1 
            H, OH), 1.88 (ddd, 1 H, 3
            J = 1.3, 
            4.9 Hz, 2
            J = 14.3 
            Hz, 4-H), 2.41 (ddd, 1 H, 3
            J = 6.0, 8.9 
            Hz, 2
            J = 14.3 
            Hz, 4-H), 3.50 (dd, 1 H, 3
            J = 4.6 
            Hz, 2
            J = 10.4 
            Hz, -H), 3.61 (dd, 1 H, 3
            J = 5.3 
            Hz, 2
            J = 10.4 
            Hz, -H), 3.86 (qd, 1 H, 3
            J
            d = 3.1 
            Hz, 3
            J
            q = 6.4 
            Hz, 2-H), 4.10-4.23 (m, 2 H, 3-H, 5-H); 13C 
            NMR (CDCl3, 63 MHz): δ = 13.9, 36.7, 39.8, 
            73.3, 76.4, 79.8. (2S,3S,5R)-5-Bromomethyl-3-hydroxy-2-methyltetrahydrofuran 
            (6d): Rf = 0.45 (petroleum 
            ether/ Et2O, 1:2 (v/v)); [α]D
            25 = -21.8 
            (c = 1.0, CHCl3); 1H 
            NMR (250 MHz): δ = 1.26 (d, 3 H, 3
            J = 6.4 Hz, 6-H), 1.69 (s, 1 
            H, OH), 1.88 (ddd, 1 H, 3
            J = 4.7, 
            9.2 Hz, 2
            J = 13.8 
            Hz, 4-H), 2.20 (ddd, 1 H, 3
            J = 1.2, 
            6.7 Hz, 2
            J = 13.8 Hz, 
            4-H), 3.456 (d, 1 H, 3
            J = 5.7 
            Hz, -H), 3.458 (d, 1 H, 3
            J = 5.0 
            Hz, -H), 4.12 (qd, 1 H, 3
            J
            d = 2.8 
            Hz, 3
            J
            q = 6.4 
            Hz, 2-H), 4.24 (mc, 1 H, 3-H) 4.41-4.53 (m, 
            1 H, 5-H); 13C NMR (CDCl3, 
            63 MHz): δ = 14.1, 36.5, 40.5, 74.2, 76.1, 79.0.Ee 
            values for trisubstituted tetrahydrofurans 6a-d were determined for their derived (R)-configured Mosher esters. Samples which contained 
            the enantiomers of 6a-d in excess were available from a previous 
            study:  
            Hartung J.Kneuer R. Eur J. Org. Chem. 2000, 1677
- 29 
             
            Dale JA.Dull DL.Mosher HS. J. Org. Chem. 1969, 34: 2543
- 30 
             
            Kirby AJ. In The Anomeric Effect and Related Stereoelectronic Effects at Oxygen Springer-Verlag; Berlin: 1983.Reference Ris Wihthout Link
- 32 An optical rotation of [α]D
            25 ≥ 0° has 
            been reported for enantiopure (+)-epiallo-muscarine(1d):  
            De Amici M.De Micheli C.Moteni G.Pitrè D.Carrea G.Riva S.Spezia S.Zetta L. J. Org. Chem. 1991, 56: 67 ; this value was confirmed by us in an independent study using enantiopure 1d. The origin for the significant positive [α]D 25 for the enantioenriched sample which was prepared in the present study using the AD bromocycloetherification sequence is unclear
References
(Z)-1,4-Hexadiene(2) (Fluka) (E)-1,4-hexadiene(4) (Chemsampco) are commercially available and were used as recieved.
20R f values of hexenediols (SiO2, Et2O): 0.61 for (2S,3R)-5-hexene-2,3-diol(3), [19] 0.59 for (2S,3S)-5-hexene-2,3-diol(5), [19] 0.69 for (Z)-4-hexene-1,2-diol and for (E)-4-hexene-1,2-diol. Ee values of diols 3 and 5 were determined by GC on a β-Dex-325 column (Supelco).
25Hartung, J.; Greb, M.; pehar, K.; Köhler, F.; Kluge, M.; Csuk, R. in preparation.
31Analytical data (1H NMR and 13C NMR in D2O) obtained for alkaloids 1a-d matched with the values reported in the literature; [10-13] 1a: 40% ee; [α]D 25 = +6.0° (c = 1.0, EtOH); 1b: 40% ee; [α]D 25 = -13.1° (c = 1.9, EtOH); 1c: 90% ee; [α]D 25 = +19.8° (c = 0.9, EtOH); 1d: 90% ee; [α]D 25 = +14.6° (c = 2.2, EtOH). [32]
 
    