Zusammenfassung
Die Therapie von Erkrankungen ist oftmals problematisch, weil das erkrankte Gewebe
von den Pharmaka nicht in ausreichender Konzentration erreicht wird. Das kommt daher,
dass zwischen Blut und Gewebe eine morphologisch definierbare Schranke liegt. Am bekanntesten
sind Blut-Hirn-, Blut-Hoden-, Blut- Retina-, Blut-Plazenta- und Blut-Thymus-Schranke.
Bei der Blut-Hirn-, der inneren Blut-Retina- und der Blut-Thymus-Schranke bildet das
Endothel der Blutkapillare die Schranke. Bei der Blut-Hoden-, der äußeren Blut-Retina-
und der Blut-Plazenta-Schranke sind außerhalb der Kapillare liegende Epithelien für
die Schrankenwirkung verantwortlich. Neben morphologischen Kennzeichen, wie dichten
interzellulären Verbindungen und einem Mangel an Endozytosevesikeln, exprimieren schrankenbildende
Epithelien typische Transporterproteine, die zum Beispiel Arzneistoffe aus der Zelle
transportieren und so die sog. Multi-Drug Resistance bewirken. Neben Entzündungen
führen vor allem Tumoren zu einer Schrankenstörung. Es gibt verschiedene experimentelle
Ansätze, wie die Schranken umgangen oder durchbrochen werden können. Sie basieren
einerseits auf einer Steigerung der Schrankendurchlässigkeit durch die Verabreichung
des Wirkstoffes zusammen mit Entzündungsmediatoren (z. B. Bradykinin) oder mit hyperosmolaren
Stoffen (z. B. Mannitol), andererseits auf der chemischen Veränderung des Wirkstoffes
durch Einschluss in Liposomen oder Kopplung an Substanzen, die Parenchymzellen aktiv
aufnehmen. Für die Behandlung von Erkrankungen mit Blut-Gewebe-Schranke ist es nicht
ausreichend, ein effektives Medikaments in der Hand zu haben; man muss zusätzlich
der besonderen Situation angepasste geeignete Applikationswege wählen.
Summary
Pharmacologic effects caused by systemic administration of drugs in some organs are
prevented by poor transport of the often large or hydrophilic molecules to the parenchyme.
The exclusion of macromolecules from the tissue is called blood-tissue barrier. Common
examples for barriers are the blood-brain, the blood-placenta-, the blood-retina-,
the blood-testis- and the blood- thymus-barrier. The barriers have a well defined
anatomic substrate: for the blood-brain-, the inner blood- retina and the blood-thymus-barrier
it is the endothelium, for the blood-placenta-, the outer blood-retina-, the blood-testis-
and the blood-thymus-barrier these are epithelial cells in the vicinity of the capillary.
Epithelia with barrier-function typically have dense intercellular junctions and few
pinocytotic vesicles. They express many transporters for the selective transport and
for the exchange of molecules. One group of transporters is responsible for the multi-drug
resistance. Inflammations and tumors are the most common causes for disturbances of
the blood-tissue-barriers.
Strategies available for drug delivery to tissues with barriers include the opening
of the barrier and the modification of the drug. The opening of the permeability can
be acchieved by the co-application of the respective drug with mediators as bradykinin
or hyperosmolar concentrations of mannitol. Modifications of the drug include lipidization
of the molecule, enclosure into liposomes and coupling to substances that are actively
taken up by the cells. The pharmaceutical treatment of organs with blood-tissue barriers
requires both an efficacious drug and an special application strategy.
Literatur
- 1
Abbott N J.
Inflammatory mediators and modulation of
blood-brain barrier permeability.
Cell Mol Neurobiol.
2000;
20
131-147
- 2
Abbott N J, Romero I A.
Transporting
therapeutics across the blood-brain barrier.
Mol Med Today.
1996;
2
106-113
- 3
Abdelsalam A, Del P riore L, Zarbin M A.
Drusen in age-related macular degeneration.
Surv
Ophthalmol.
1999;
44
1-29
- 4
Alyaudtin R N. et al .
Interaction of poly(butylcyanoacrylate)
nanoparticles with the blood- brain barrier in vivo and in vitro.
J
Drug Target.
2001;
9
209-221
- 5
Annunziata P. et al .
Frequency of blood-retina and blood-brain
barrier changes in multiple sclerosis.
Ital J Neurol Sci.
1988;
9
345-349
- 6
Ayre S G.
New
approaches to the delivery of drugs to the brain.
Med
Hypotheses.
1989;
29
283-291
- 7
Banks W A, Kastin A J.
Passage of
peptides across the blood-brain barrier: pathophysiological perspectives.
Life
Sci.
1996;
59
1923-1943
- 8
Bartus R T, Elliott P J, Dean R L. et al .
Controlled modulation of
BBB permeability using the bradykinin agonist, RMP-7.
Exp
Neurol.
1996;
142
14-28
- 9 Benirschke K. et al .Pathology of the human placenta. New
York: Springer 2000
- 10
Bickel U, Yoshikawa T. et al .
Pharmacologic
effects in vivo in brain by vector-mediated peptide drug delivery.
Proc
Natl Acad Sci USA.
1993;
90
2618-2622
- 11
Bickel U, Yoshikawa T, Pardridge W M.
Delivery of peptides and proteins through the
blood-brain barrier.
Adv Drug Deliv Rev.
2001;
46
247-279
- 12
Boado R J. et al .
Drug delivery of antisense molecules to
the brain for treatment of Alzheimer’s disease and cerebral
AIDS.
J Pharm Sci.
1998;
87
1308-1315
- 13
Chanana A D, Capala J, Chadha M. et al .
Boron neutron capture therapy for glioblastoma
multiforme.
Neurosurgery.
1999;
44
1182-1192
discuss. 1192-1193
- 14
Coloma M J, Lee H J, Kurihara A. et al .
Transport across the primate blood-brain barrier
of a genetically engineered chimeric monoclonal antibody to the
human insulin receptor.
Pharm Res.
2000;
17
266-274
- 15
Dean M, Hamon Y, Chimini G.
The
human ATP-binding cassette (ABC) transporter superfamily.
J
Lipid Res.
2001;
42
1007-1017
- 16
Doolittle N D. et al .
Safety and efficacy of a multicenter study
using intraarterial chemotherapy in conjunction with osmotic opening
of the blood-brain barrier for the treatment of patients with malignant
brain tumors.
Cancer.
2000;
88
637-647
- 17
Fanning A S, Mitic L L, Anderson J M.
Transmembrane proteins in the tight junction barrier.
J
Am Soc Nephrol.
1999;
10
1337-1345
- 18 Greger R. et al .Comprehensive Human Physiology. Berlin:
Springer 1996
- 19
Habgood M D, Begley D J, Abbott N J.
Determinants of passive drug entry into
the central nervous system.
Cell Mol Neurobiol.
2000;
20
231-253
- 20
Huber J D, Egleton R D, Davis T P.
Molecular physiology and pathophysiology
of tight junctions in the blood-brain barrier.
Trends
Neurosci.
2001;
24
719-725
- 21
Inamura T, Nomura T, Bartus R T, Black K L.
Intracarotid
infusion of RMP-7, a bradykinin analog.
J Neurosurg.
1994;
81
752-758
- 22
Itoh M, Sasaki H, Furuse M, Ozaki H, Kita T, Tsukita S.
Junctional adhesion molecule (JAM) binds
to PAR-3.
J Cell Biol.
2001;
154
491-497
- 23
Johnson M D, Chen J, Anderson B D.
Investigation
of the Mechanism of Enhancement of Central Nervous System Delivery
of 2’-beta-Fluoro-2’,3’-Dideoxyinosine Via
a Blood-Brain Barrier Adenosine Deaminase-Activated Prodrug.
Drug
Metab Dispos.
2002;
30
191-198
- 24
Kalaria R N.
The
blood-brain barrier and cerebrovascular pathology in Alzheimer’s
disease.
Ann N Y Acad Sci.
1999;
893
113-125
- 25
Kaya M, Chang L, Truong A, Brightman M W.
Chemical induction of fenestrae
in vessels of the blood-brain barrier.
Exp Neurol.
1996;
142
6-13
- 26
Kuwano M. et al .
Multidrug resistance-associated protein
subfamily transporters and drug resistance.
Anticancer
Drug Des.
1999;
14
123-131
- 27
Leblond C P, Inoue S.
Structure, composition,
and assembly of basement membrane.
Am J Anat.
1989;
185
367-390
- 28
Liebner S, Fischmann A, Rascher G. et al .
Claudin-1 and claudin-5 expression and tight
junction morphology are altered in blood vessels of human glioblastoma multiforme.
Acta
Neuropathol (Berl).
2000;
100
323-331
- 29
Lippoldt A, Kniesel U. et al .
Structural
alterations of tight junctions are associated with loss of polarity
in stroke-prone spontaneously hypertensive rat blood-brain barrier
endothelial cells.
Brain Res.
2000;
885
251-261
- 30
Liu X F, Fawcett J R, Thorne R G, DeFor T A, Frey W H 2nd.
Intranasal administration of
insulin-like growth factor-I bypasses the blood-brain barrier and
protects against focal cerebral ischemic damage.
J Neurol
Sci.
2001;
187
91-7
- 31
Miosge N, Heinemann S, Leissling A, Klenczar C, Herken R.
Ultrastructural
triple localization of laminin-1, nidogen-1, and collagen type IV
helps elucidate basement membrane structure in vivo.
Anat
Rec.
1999;
254
382-388
- 32
Mooradian A D.
Effect
of aging on the blood-brain barrier.
Neurobiol Aging.
1988;
9
31-39
- 33
Nerlich A.
Morphology
of basement membrane and associated matrix proteins in normal and
pathological tissues.
Veroff Pathol.
1995;
145
1-139
- 34
Nomura T, Ikezaki K. et al .
Effect
of histamine on the blood-tumor barrier in transplanted rat brain
tumors.
Acta Neurochir Suppl.
1994;
60
400-402
- 35
Pardridge W M.
Blood-brain
barrier transport of glucose, free fatty acids, and ketone bodies.
Adv
Exp Med Biol.
1991;
291
43-53
- 36
Pardridge W M.
Recent
developments in peptide drug delivery to the brain.
Pharmacol
Toxicol.
1992;
71
3-10
- 37
Pignol J P, Chauvel P.
Neutron capturing irradiation:
principle, current results and perspectives.
Bull Cancer
Radiother.
1995;
82
283-297
- 38 Rohen J W, Lütjen-Drecoll E. Funktionelle
Anatomie. Stuttgart: Schattauer 1996
- 39 Schmidt R F, Thews G. Physiologie des Menschen. Berlin:
Springer 1995
- 40
Singh J, Burr B, Stringham D, Arrieta A.
Commonly used antibacterial
and antifungal agents for hospitalised paediatric patients.
Paediatr
Drugs.
2001;
3
733-761
- 41 Suckling A J, Rumsby M G, Bradbury M WB. The Blood-Brain Barrier in Health
and Disease. Chicester: Ellis Horwood 1986
- 42
Tsuji A, Tamai I I.
Carrier-mediated
or specialized transport of drugs across the blood- brain barrier.
Adv
Drug Deliv Rev.
1999;
36
277-290
- 43
Wang Y, Aun R, Tse F L.
Brain
uptake of dihydroergotamine after intravenous and nasal administration
in the rat.
Biopharm Drug Dispos.
1998;
19
571-575
- 44
Whitby M, Finch R.
Bacterial meningitis.
Drugs.
1986;
31
266-278
- 45
Wolburg H. et al .
Claudin-1, claudin-2 and claudin-11 are
present in tight junctions of choroid plexus epithelium of the mouse.
Neurosci
Lett.
2001;
307
77-80
Priv.-Doz. Dr. med. Eleonore Fröhlich
Anatomisches Institut, Universität
Tübingen
Österbergstraße 3
72074 Tübingen