Subscribe to RSS
DOI: 10.1055/s-2002-25357
Multi-functionalized 2,2′:6′,2′′-Terpyridines
Publication History
Publication Date:
07 February 2007 (online)

Abstract
In this contribution, Stille-type cross-coupling procedure is shown to be an easy and universal way to prepare a variety of functionalized terpyridines. They may be functionalized in one step with different substituents at the outer pyridine rings and at the 4′-position of the centered ring, leading to multi-functionalized compounds. The initially obtained methylester and ethylester groups may be simply converted into bromomethyl and hydroxymethyl groups, which allow further functionalization reactions.
Key words
terpyridine synthesis - Stille cross-coupling - functional groups - multidentate ligands - multifunctionality
-
1a
Armspach D.Constable EC.Housecroft CE.Neuburger M.Zehnder M. J. Organomet. Chem. 1998, 550: 193 -
1b
Collin JP.Guillerez S.Sauvage JP. J. Chem. Soc., Chem. Commun. 1989, 776 -
1c
Hanabusa K.Nakamura A.Koyama T.Shirai H. Polym. Int. 1994, 35: 231 -
1d
Whittle B.Batten SR.Jeffery JC.Rees LH.Ward MD. J. Chem. Soc., Dalton Trans. 1996, 22: 4249 -
2a
Constable EC. Metals and Ligand Reactivity VCH; Weinheim: 1996. -
2b
Constable EC. In HYPERLINK
http://www.wiley.com/cda/product/03527292195,00.htmlKarlin KD. John Wiley and Sons; New York: 1994. p.67 -
3a
Schubert US. In Tailored Polymers and ApplicationsYaggi Y.Mishra MK.Nuyken O.Ito K.Wnek G. VSP Publishers; Utrecht: 2000. p.63 -
3b
Schubert US.Hochwimmer G.Heller M. In Synthetic Macromole-cules with Higher Structural Order Vol. 812:Khan I. ACS Symp. Ser.; Washington DC: 2001. p.163 -
3c
Heller M.Schubert US. Macromol. Rapid Commun. 2001, 22: 1358 -
3d
Schubert US.Eschbaumer C. Macromol. Symp. 2001, 163: 177 -
3e
Schubert US.Eschbaumer C.Hien O.Andres PR. Tetrahedron Lett. 2001, 42: 4705 -
3f
Schubert US.Heller M. Chem.-Eur. J. 2001, 7: 5252 -
3g
Schubert, U. S.; Eschbaumer, C. Angew. Chem. Int. Ed. 2002 , in press.
- 4
Schubert US.Weidl CH.Moorefield CN.Baker GR.Newkome GR. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1999, 40: 940 -
5a
Padilla-Tosta ME.Lloris JM.Martinez-Manez R.Benito A.Soto J.Pardo T.Miranda MA.Marcos MD. Eur. J. Inorg. Chem. 2000, 741 -
5b
Potts KT.Usifer DA.Guadalupe A.Abruna HD. J. Am. Chem. Soc. 1987, 109: 3961 -
5c
Fallahpour R.-A.Neuburger M.Zehnder M. New J. Chem. 1999, 53 -
5d
Fallahpour R.-A.Neuburger M.Zehnder M. Synthesis 1999, 6: 1051 -
6a
Larson SL.Elliot CM.Kelley DF. Inorg. Chem. 1996, 35: 2070 -
6b
Balzani V.Juris A.Venturi M. Chem. Rev. 1996, 96: 759 -
6c
Maestri M.Armali N.Balzani V.Constable EC.Cargill Thompson AMV. Inorg. Chem. 1995, 34: 2759 -
7a
Kröhnke F. Synthesis 1976, 1 -
7b
Kröhnke F. Angew. Chem. 1963, 75: 317 -
7c
Potts KT. J. Org. Chem. 1991, 56: 4812 -
8a
Stille JK. Angew. Chem., Int. Ed. Engl. 1986, 25: 508 ; Angew. Chem. 1986, 98, 504 -
8b
Labadie JW.Stille JK. J. Am. Chem. Soc. 1983, 105: 6129 - 9
Schubert US.Eschbaumer C.Heller M. Org. Lett. 2000, 2: 3373 - See, for example:
-
10a
Schubert US.Eschbaumer C.Hochwimmer G. Tetrahedron Lett. 1998, 39: 8643 -
10b
Schubert US.Eschbaumer C.Hochwimmer G. Synthesis 1999, 779 - 12
Schubert US.Eschbaumer C. Org. Lett. 1999, 1: 1027 - 13 See also:
Houghton MA.Bilyk A.Harding MM.Turner P.Hambley TW. J. Chem. Soc., Dalton Trans. 1997, 2725 - See also:
-
14a
Cardenas DJ.Sauvage J.-P. Synlett 1996, 9: 916 -
14b
Schubert US.Eschbaumer C.Hochwimmer G. Polym. Mater. Sci. Eng. 1999, 80: 193 - 15
Constable EC.Baum G.Bill E.Dyson R.Eldik R.Fenske D.Kaderli S.Morris D.Neubrand A.Neuburger M.Smith DR.Wieghardt K.Zehnder M.Zuberbühler AD. Chem.-Eur. J. 1999, 5: 498 -
16a
Fallahpour R.-A. Synthesis 2000, 8: 1138 -
16b
Ulrich G.Bedel S.Picard C.Tisnes B. Tetrahedron Lett. 2001, 42: 6113 - 17 For a similar reaction see:
Fallahpour R.-A. Synthesis 2000, 12: 1665
References
Dimethyl-2,2′:6′,2′′-terpyridines. Route 1: The methyl-2-tributylstannylpyridine 2a-c (3 g, 7.85 mmol), 2,6-dibromopyridine 1 (0.75 g, 3.17 mmol) and tetrakis-(triphenylphosphine)-palladium(0) (0.29 g, 6.0 mol%) are refluxed for 4 days in absolute toluene (50 mL). After removal of the solvent, the black residue is treated with aq HCl (6 M). The suspension is extracted with CH2Cl2 and the organic phase is washed again with HCl (6 M). The aq solution is added dropwise into cold aq ammonia (10%). The precipitate is filtered off, dissolved in CH2Cl2, dried over Na2SO4, the solvent is removed again and the residue is crystallized from ethyl acetate. Route 2: 2,6-Bis(trimethyl-stannyl)pyridine 6 (12.23 g, 7.66 mmol), the 2-bromo-methylpyridine 7a-c (3.29 g, 19.15 mmol) and tetrakis-(triphenylphosphine)-palladium(0) (0.6 g, 6 mol%) are refluxed in dry toluene (70 mL) for 72 h at 110 °C. The workup is identical to route 1. 3: White crystals. Mp 186 °C. 1H NMR (CDCl3): δ = 2.39 (s, 6 H, CH 3 ), 7.17 (dd, J = 4.96 Hz, 0.77 Hz, 2 H, H5,5 ′′ ), 7.94 (t, J = 8.01 Hz, 1 H, H4 ′), 8.41 (s, 2 H, H3,3 ′′), 8.42 (d, J = 8.01 Hz, 2 H, H3 ′ ,5 ′), 8.56 (d, J = 4.95 Hz, 2 H, H6,6 ′′). C17H15N3 (261.32): Calcd C, 78.13; H, 5.79; N, 16.08. Found: C, 78.04; H, 6.00; N, 15.92. 4: White crystals (Lit. [15] 67%). Mp 173 °C (Lit. [15] 169-171 °C, Lit. [15] 174-175 °C). 1H NMR (CDCl3): δ = 2.39 (s, 6 H, CH 3), 7.63 (dd, J = 8.01, 2.28 Hz, 2 H, H4,4 ′′), 7.91 (t, J = 7.82 Hz, 1 H, H4 ′), 8.38 (d, J = 7.62 Hz, 2 H, H3 ′ ,5 ′), 8.49 (d, J = 8.40 Hz, 2 H, H3,3 ′′), 8.50 (s, 2 H, H6,6 ′′). C17H15N3 (261.32): Calcd C, 78.13; H, 5.79; N, 16.08. Found: C, 77.92; H, 5.73; N, 16.07. 5: White crystals. Mp 171 °C (Lit. [16] >250 °C). 1H NMR (CDCl3): δ = 2.65 (s, 6 H, CH 3 ), 7.18 (d, J = 7.63 Hz, 2 H, H5,5 ′′), 7.73 (t, J = 7.63 Hz, 2 H, H4,4 ′′), 7.93 (t, J = 8.01 Hz, 1 H, H4 ′), 8.41 (d, J = 7.63 Hz, 2 H, H6,6 ′′), 8.47 (d, J = 8.01 Hz, 2 H, H3 ′ ,5 ′). C17H15N3 (261.32): Calcd C, 78.13; H, 5.79; N, 16.08. Found: C, 78.42; H, 5.63; N, 16.16.
185′,5′′-Bis(bromomethyl)-2,2′:6′,2′′-terpyridine-4′-ethylester 17 (0.5 g, 1.0 mmol) is dissolved in pure acetic acid (20 mL) and dry sodium acetate (82 mg, 1.0 mmol) is added. The mixture is heated under reflux for 1 h. After cooling, the solution is added dropwise to cold aq ammonia (10%). The oily product is extracted with CH2Cl2, washed with brine, dried and crystallized from ethyl acetate after removal of the solvent. Yield 0.31 g (71%). Mp 231 °C. 1H NMR (CDCl3): δ = 1.42 (t, J = 6.06 Hz, 3 H, OCH2CH 3), 2.10 (s, 6 H, OCOCH 3), 4.45 (q, J = 7.06 Hz, 2 H, OCH 2CH3), 5.17 (s, 4 H, Ar-CH 2 O), 7.83 (dd, J = 8.01, 2.20 Hz, 2 H, H4,4 ′′), 8.50 (d, J = 8.02 Hz, 2 H, H3,3 ′′), 8.57 (s, 2 H, H6,6 ′′), 8.90 (s, 2 H, H3 ′ ,5 ′). C24H23N3O6 (449.46): Calcd C, 64.13; H, 5.16; N, 9.35. Found: C, 64.55; H, 4.80; N, 9.01.