Subscribe to RSS
DOI: 10.1055/s-2002-24402
Homozystein, Methylentetrahydrofolatreduktase/C677T-Genotyp und Risiko für koronare Herzkrankheit
Die AtheroGene StudieHomocysteine, methylenetetrahydrofolate reductase/C677T genotype and risk for coronary heart diseaseThe AtheroGene studyPublication History
7.12.2001
14.3.2002
Publication Date:
04 April 2002 (online)

Hintergrund und Fragestellung: Homozystein wird als kardiovaskulärer Risikofaktor diskutiert. Neben einer Vielzahl von Ernährungs- und Umwelteinflüssen unterliegt der Homozysteinspiegel auch einer genetischen Regulation. Ziel der vorliegenden Untersuchung war es, in einer großen Fall-Kontroll-Studie die Bedeutung des Homozysteins, seiner Regulatoren Vitamin-B12 und Folsäure sowie des Methylentetrahydrofolatreduktase(MTHFR)C677T-Polymorphismus als Risikofaktoren für eine koronare Herzerkrankung (KHK) zu untersuchen.
Patienten und Methodik: Bei 981 Patienten mit angiographisch dokumentierter KHK sowie 332 Kontrollpersonen wurden Homozystein, Vitamin-B12 und Folsäure bestimmt. Zusätzlich wurde die Genotypisierung des MTHFR/C677T-Polymorphismus durchgeführt.
Ergebnisse: Homozystein war bei KHK-Patienten im Vergleich zu den Kontrollen erhöht (13,2 versus 10,4 mmol/l, p < 0,0001), während Vitamin-B12 (361 versus 430 pg/ml, p < 0,0001) und Folsäure (4,9 versus 8,4 ng/ml, p < 0,0001) signifikant erniedrigt waren. In einem logistischen Regressionsmodell war das höchste Homozysteinquartil (> 15,2 mmol/l) nach Abgleichen aller Risiko- und Einflussfaktoren mit einem um den Faktor 3,8 (95 %-Konfidenzintervall 1,9-7,5) erhöhten Risiko für die KHK assoziiert. Das T Allel des MTHFR/C677T-Polymorphismus ging zwar mit moderat erhöhten Homozysteinspiegeln einher (p < 0,0001 für Fälle und Kontrollen), zeigte jedoch keine Assoziation mit der Prävalenz der KHK. Während Vitamin-B12 eine unabhängige signifikante Risikoreduktion für die Prävalenz der KHK zeigt, konnte dies für Folsäure nicht demonstriert werden.
Folgerungen: Der Homozysteinspiegel ist bei Patienten mit KHK unabhängig signifikant erhöht. Der MTHFR/C677T-Genpolymorphismus führt zu moderaten Homozysteinerhöhungen, ist jedoch nicht mit einem gesteigerten KHK Risiko verbunden.
Background and objective: Homocysteine has been mooted as a risk factor for cardiovascular disease. In addition to numerous nutritional and environmental influences upon it, the homocysteine level is also under genetic regulation. It was the aim of this investigation to evaluate in a large case-control study the significance of homocysteine, its regulators vitamin B12 and folic acid, and the methylenetetrahydrofolate reductase (MTHFR)/C677T polymorphism as risk factors for coronary heart disease (CHD).
Patients and methods: Homocysteine, vitamin B12 and folic acid levels were measured in 981 patients with angiographically demonstrated CHD and in 332 control subjects (no history or clinical evidence of CHD and normal resting /ECG). Genotyping for MTHFR/C677T polymorphism was also performed.
Results: Homocysteine levels were significantly elevated in patients with CHD compared to control subjects (13.3.vs 10.04 mmol/l; p < 0.0001), while vitamin B12 (361 vs 430 pg/ml; p < 0.0001) and folic acid (4.9 vs 8.4 ng/ml; p < 0.0001) levels were significantly decreased. A logistic regression model revealed that, after allowing for most potential risk factors, the highest homocysteine quartile (> 15.2 mmol/l) was associated with an odds ratio of 3.8 (95% confidence interval 1.9-7.5) for CHD. Although the T-allele of the MTHFR/C677T polymorphism correlated with a moderately raised homocysteine level (p < 0.0001 for both, patients and controls), there was no association present with the prevalence of CHD. While vitamin B12 levels showed a significant independent risk reduction in the prevalence of CHD, none was demonstrated for folic acid.
Conclusions: The homocysteine level is a significant independent risk factor for CHD. MTHFR/C677T gene polymorphism leads to a moderate increase in homocysteine levels, but this does not raise the risk of CHD.
Literatur
- 1
Alfthan G, Pekkanen J, Jauhiainen M. et al .
Relation of serum Homozysteine and lipoprotein(a)
concentrations to atherosclerotic disease in a prospective Finnish population
based
study.
Atherosclerosis.
1994;
106
9-19
MissingFormLabel
- 2
Anderson J L, Muhlestein J B, Horne B D. et al .
Plasma Homozysteine predicts mortality independently of
traditional risk factors and C-reactive protein in patients with
angiographically defined coronary artery
disease.
Circulation.
2000;
102
1227-1232
MissingFormLabel
- 3
Arnesen E, Refsum H, Bonaa K H, Ueland P M, Forde O H, Nordrehaug J E.
Serum total Homozysteine and coronary heart
disease.
Int J
Epidemiol.
1995;
24
704-709
MissingFormLabel
- 4
Blankenberg S, Rupprecht H J, Bickel C. et al .
Circulating cell adhesion molecules and death in patients
with coronary artery
disease.
Circulation.
2001;
104
1336-1342
MissingFormLabel
- 5
Boushey C J, Beresford S A, Omenn G S, Motulsky A G.
A quantitative assessment of plasma Homozysteine as a risk
factor for vascular disease. Probable benefits of increasing folic acid
intakes.
JAMA.
1995;
274
1049-1057
MissingFormLabel
- 6
Chasan-Taber L, Selhub J, Rosenberg I H. et al .
A prospective study of folate and vitamin B6 and risk of
myocardial infarction in US physicians.
J Am Coll
Nutr.
1996;
15
136-143
MissingFormLabel
- 7
Clarke R, Armitage J.
Vitamin supplements and cardiovascular risk: review of the
randomized trials of Homozysteine-lowering vitamin supplements.
Semin
Thromb
Hemost.
2000;
26
341-348
MissingFormLabel
- 8
den
Heijer M, Brouwer I A, Bos G M. et al .
Vitamin supplementation reduces blood Homozysteine levels: a
controlled trial in patients with venous thrombosis and healthy
volunteers.
Arterioscler Thromb Vasc
Biol.
1998;
18
356-361
MissingFormLabel
- 9
Eikelboom J W, Lonn E, Genest J, Hankey G, Yusuf S.
Homocyst(e)ine and cardiovascular disease: a critical review
of the epidemiologic evidence.
Ann Intern
Med.
1999;
131
363-375
MissingFormLabel
- 10
Evans R W, Shaten B J, Hempel J D, Cutler J A, Kuller L H.
Homocyst(e)ine and risk of cardiovascular disease in the
Multiple Risk Factor Intervention Trial.
Arterioscler Thromb Vasc
Biol.
1997;
17
1947-1953
MissingFormLabel
- 11
Folsom A R, Nieto F J, McGovern P G. et al .
Prospective study of coronary heart disease incidence in
relation to fasting total Homozysteine, related genetic polymorphisms, and B
vitamins: the Atherosclerosis Risk in Communities (ARIC)
study.
Circulation.
1998;
98
204-210
MissingFormLabel
- 12
Frosst P, Blom H J, Milos R. et al .
A candidate genetic risk factor for vascular disease: a
common mutation in methylenetetrahydrofolate reductase (letter).
Nat
Genet.
1995;
10
111-113
MissingFormLabel
- 13
Kluijtmans L A, Kastelein J J, Lindemans J. et al .
Thermolabile methylenetetrahydrofolate reductase in coronary
artery
disease.
Circulation.
1997;
96
2573-2577
MissingFormLabel
- 14
Kluijtmans L A, van
den
Heuvel L P, Boers G H. et al .
Molecular genetic analysis in mild hyperHomozysteinemia: a
common mutation in the methylenetetrahydrofolate reductase gene is a genetic
risk factor for cardiovascular disease.
Am J Hum
Genet.
1996;
58
35-41
MissingFormLabel
- 15
Morita H, Taguchi J, Kurihara H. et al .
Genetic polymorphism of 5,10-methylenetetrahydrofolate
reductase (MTHFR) as a risk factor for coronary artery
disease.
Circulation.
1997;
95
2032-2036
MissingFormLabel
- 16
Mudd S H, Skovby F, Levy H L. et al .
The natural history of homocystinuria due to cystathionine
beta-synthase deficiency.
Am J Hum
Genet.
1985;
37
1-31
MissingFormLabel
- 17
Nygard O, Nordrehaug J E, Refsum H, Ueland P M, Farstad M, Vollset S E.
Plasma Homozysteine levels and mortality in patients with
coronary artery disease.
N Engl J
Med.
1997;
337
230-236
MissingFormLabel
- 18
Perry I J, Refsum H, Morris R W, Ebrahim S B, Ueland P M, Shaper A G.
Prospective study of serum total Homozysteine concentration
and risk of stroke in middle-aged British
men.
Lancet.
1995;
346
1395-1398
MissingFormLabel
- 19
Ridker P M, Manson J E, Buring J E. et al .
Homozysteine and risk of cardiovascular disease among
postmenopausal
women.
JAMA.
1999;
281
1817-1821
MissingFormLabel
- 20
Smith S C, Greenland P, Grundy S M.
AHA Conference Proceedings. Prevention conference V: Beyond
secondary prevention: Identifying the high-risk patient for primary prevention:
executive summary. American Heart
Association.
Circulation.
2000;
101
111-116
MissingFormLabel
- 21
Schnyder G, Roffi M, Pin R. et al .
Decreased rate of coronary restenosis after lowering of
plasma homocysteine levels.
N Engl J
Med.
2001;
345
1593-1600
MissingFormLabel
- 22
Stampfer M J, Malinow M R, Willett W C. et al .
A prospective study of plasma homocyst(e)ine and risk of
myocardial infarction in US
physicians.
Jama.
1992;
268
877-881
MissingFormLabel
- 23
Taylor L M, DeFrang R D, Harris E J, Porter J M.
The association of elevated plasma homocyst(e)ine with
progression of symptomatic peripheral arterial disease.
J Vasc
Surg.
1991;
13
128-136
MissingFormLabel
- 24
Verhoef P, Kok F J, Kluijtmans L A. et al .
The 677C->T mutation in the methylenetetrahydrofolate
reductase gene: associations with plasma total Homocysteine levels and risk
of
coronary atherosclerotic
disease.
Atherosclerosis.
1997;
132
105-113
MissingFormLabel
- 25
Wald N J, Watt H C, Law M R, Weir D G, McPartlin J, Scott J M.
Homocysteine and ischemic heart disease: results of a
prospective study with implications regarding prevention.
Arch Intern
Med.
1998;
158
862-867
MissingFormLabel
- 26
Welch G N, Loscalzo J.
Homocysteine and atherothrombosis.
N Engl J
Med.
1998;
338
1042-1050
MissingFormLabel
Dr. med. Stefan Blankenberg
II. Medizinische Klinik und Poliklinik, Johannes
Gutenberg-Universität Mainz
Langenbeckstraße 1
55101 Mainz
Phone: 06131/175169
Fax: 06131/175691
Email: stefan.blankenberg@uni-mainz.de