References
1a
Li CJ.
Chem. Rev.
1993,
93:
2023
1b
Li CJ.
Tetrahedron
1996,
52:
5643
1c
Li CJ.
Chan TH.
Tetrahedron
1999,
55:
11149
1d
Li CJ.
Chan TH.
Organic Reactions in Aqueous Media
John Wiley and Sons, Inc.;
New York:
1997.
1e
Lubineau JA.
Queneau Y.
Synthesis
1994,
741
2a
Paquette LA.
Lobben PC.
J. Am. Chem. Soc.
1996,
118:
1917
2b
Chan TH.
Lee MC.
J. Org. Chem.
1995,
60:
4228
2c
Crao J.
Houter R.
Gordon DM.
Whitesides GM.
J. Org. Chem.
1994,
59:
3714
2d
Paquette LA.
Mitzel TM.
J. Am. Chem. Soc.
1996,
118:
1931
2e
Paquette LA.
Mitzel TM.
J. Org. Chem.
1996,
61:
8799
2f
Paquette LA.
Mitzel TM.
Isaac MB.
Crasto CF.
Schomer WW.
J. Org. Chem.
1997,
62:
4293
2g
Paquette LA.
Lobben PC.
J. Org. Chem.
1998,
63:
5604
2h
Lobben PC.
Paquette LA.
J. Org. Chem.
1998,
63:
6990
2i
Kumar S.
Kaur P.
Chimni SS.
Singh P.
Synlett
2001,
1431
3
Kumar S.
Kumar V.
Singh S.
Chimni SS.
Tetrahedron Lett.
2001,
42:
5073
4
Kumar S.
Kumar V.
Chimni SS.
J. Chem. Res., Synop.
2000,
314
5a
Li CJ.
Lu Y.
Tetrahedron Lett.
1995,
36:
2721
5b
Fujiwara N.
Yamamoto Y.
J. Org. Chem.
1999,
64:
4095
6a
Wada M.
Honna M.
Kuramoto Y.
Miyoshi N.
Bull. Chem. Soc. Jpn.
1997,
70:
2265
6b
Wada M.
Fukuma T.
Morioka M.
Takahashi T.
Miyoshi N.
Tetrahedron Lett.
1997,
38:
8045
7a
Wang Z.
Meng X.
Kabalka GW.
Tetrahedron Lett.
1991,
32:
4619
7b
Wang Z.
Meng X.
Kabalka GW.
Tetrahedron Lett.
1991,
32:
5677
8
Wang Z.
Xu G.
Wang D.
Pierce ME.
Confalone PN.
Tetrahedron Lett.
2000,
41:
4523
9
General Procedure: The 2-oxocarboxylic acid 1 (0.5 mmol), allyl bromide (0.75 mmol), indium metal (0.5 mmol) were taken in THF-H2O (2:1) mixture and the reaction mixture was stirred at 30 °C until the indium metal dissolved. The turbid reaction mixture was treated with dilute HCl and extracted with CHCl3. The solvent was distilled off and the residue was column chromatographed (silica gel, 60-120 mesh) to isolate the allyl addition product. In the case of reactions with sodium 2-oxocarboxylate (0.5 mmol), 2 C (1.5 mmol) and indium (1.0 mmol) the pH (4.7) of the reaction was controlled initially by addition of HOAc and during the course of reaction with aq NaOH (2%).
10
1 H NMR spectral data for the representative cases are given here. 3e: δ 2.18 (s,1 H, OH, exchanges with D2O), 3.86 (dd, J
1 = 7.6 Hz, J
2 = 4 Hz, 1 H, CH), 4.59 (d, J = 4 Hz, 1 H, CH), 5.20-5.29 (m, 2 H, =CH2), 6.17-6.32 (m, 1 H, =CH), 7.22-7.37 (m, 5 H, ArH) (For Na salt: mp >300 °C, found C 61.4; H 5.1%. C11 H11O3Na requires C 61.7; H 5.1%). 3f: mp 168 °C; δ 4.39 (s, 1 H, OH, exchanges with D2O), 4.4 (d,
J = 9.5 Hz, 1 H, CH), 4.79-4.99 (m, 2 H, =CH2), 5.89-6.03 (m, 1 H, =CH), 7.19-7.41 (m, 8 H, ArH), 7.72-7.73 (m, 2 H, ArH) (Found C 76.3; H 5.99%. C17H16O3 requires C 76.1; H 5.97%). 3g : δ 1.31 (t, J = 7 Hz, 3 H, CH3), 2.09 (s, 1 H, OH, exchanges with D2O), 3.62 (dd, J
1 = 8.4 Hz, J
2 = 3.6 Hz,
1 H, CH), 4.20 (s, 1 H, OH, exchanges with D2O), 4.22 (q,
J = 7 Hz, 2 H, OCH2) 4.47 (d, J = 3.6 Hz, 1 H, CH), 5.26-5.38 (m, 2 H, =CH2), 5.77-6.07 (m, 1 H, =CH) (For Na salt: mp >300 °C; found C 45.4, H 4.9. C8H11O5Na requires C 45.7; H, 5.2%). 3 h: mp 97-98 °C; δ 1.29 (t, J = 7.2 Hz,
3 H,CH3), 2.20 (s, 1 H, OH, exchanges with D2O), 4.14 (d,
J = 8.2 Hz, 1 H, CH), 4.22 (q, J = 7.2 Hz, 2 H, OCH2), 5.02-5.17 (m, 2 H, =CH2), 5.56-5.68 (m, 1 H, =CH), 7.29-7.42 (m, 8 H, ArH), 7.58-7.63 (m, 2 H, ArH). (Found C 63.3;
H 6.0%. C14 H16O5 requires C 63.3; H 6.06%).
11 Similar increase in both rate of reaction and diastereoselectivity of allylation at pH 4.0 and slowed allylation at pH 7.0 was reported earlier (ref.
[2d]
).