Subscribe to RSS
DOI: 10.1055/s-2001-16579-2
Myocardial regeneration after intracoronary transplantation of human autologous stem cells following acute myocardial infarction
Publication History
Publication Date:
12 May 2004 (online)

Myocardial infarction is characterised by myocardial necrosis with loss of contractile tissue as well as by a decrease in ventricular function. The infarct area is centrally necrosed, nonviable and scarred. Usually minimal residual perfusion is preserved. Depending on the initial size of the infarction, structural remodelling takes place, i. e. ventricular dilatation occurs and ventricular function decreases [2] [3] [5]. Early treatment with thrombolysis and/or mechanical procedures as balloon dilatation (PTCA) with or without stent implantation can reduce the infarction area. However, reduction of any existing necrosis is not possible [5].
Cardiomyocytes are irreparably damaged after myocardial infarction and there is no regeneration by precursor cells. Any myocardial neogenesis and, in a limited way, neovascularisation could improve left ventricular function and prevent remodelling [4] [6]. Experiments in a mouse model of infarct treatment by cell replacement have shown that intramyocardial injection of bone marrow stem cells into vital marginal zones can lead to regeneration [11]. Similar results were obtained with myocardial placement of cultured peripheral skeletal muscle cells [10], and with left-ventricular injection of mesenchymal progenitor cells [9]. Based on these findings we asked three clinical questions:
Is treatment of myocardial infarction with stem cells possible under clinical conditions? Are human autologous bone marrow stem cells, after separation of the haematopoetic cells, suitable as myocardial cell replacement? Can intramyocardial transplantation be achieved by transcatheter intracoronary infusion into the infarcted area via the coronary arteries that supply the marginal zone?
This report demonstrates that intracoronary transplantation of autologous stem cells is possible and clinically feasible using the described method.
References
- 1
Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silve, M, Kearne M, Magner M, Isner J M.
Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis
in physiological and pathological neovascularization.
Circulation Res.
1999;
85
221-228
MissingFormLabel
- 2
Bolognese L, Cerisamo G, Buonamici P, Santini H, Santoro G M, Antoniacci D, Fazzini P F.
Influence of infarctzone viability on left ventricular remodeling after acute myocardial
infarction.
Circulation.
1997;
96
3353-3359
MissingFormLabel
- 3
Christian T F, Schwartz R S, Gibbons R J.
Determinants of infarct size in reperfusion therapy for acute myocardial infarction.
Circulation.
1992;
86
81-90
MissingFormLabel
- 4
Kawamoto A, Gwon H C, Iwaguro H, Yamaguchi J I, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner J M, Asahara T.
Therpeutic potential of ex vivo expanded endothelial progenitor cells for myocardial
ischemia.
Circulation.
2001;
103
634-637
MissingFormLabel
- 5
Kelm M, Strauer B E.
Interventionelle Therapie des akuten Myokardinfarktes.
Internist.
2001;
42
686-698
MissingFormLabel
- 6
Kessler P D, Byrne B J.
Myoblast cell grafting into heart muscle: cellular biology and potential applications.
Annu Rev Physiol.
1999;
61
243-282
MissingFormLabel
- 7
Kocher A A, Schuster M D, Szaboks M J, Takuma S, Burkhoff D, Wang J, Homma S, Edwards N M, Itescu S.
Neovascularisation of ischemic myocardium by human bone-marrow-derived angioblasts
prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function.
Nature.
2001;
7
430-436
MissingFormLabel
- 8
Kögler G, Callejas J, Sorg R V, Fischer J, Migliaccio H R, Wernet P.
The effect of different thawing methods, growth factor combinations and media on
the ex vivo expansion of umbilical cord blood primitive and committed progenitors.
Bone Marrow Transplant.
1998;
21
233-241
MissingFormLabel
- 9
Martin B J, Shake J G, Brawn J, Rehmond M, Pittenga M F.
Mesenchymal stem cell (MSC) implantation improves regional function in infarcted
swine myocardium (abstr).
Circulation.
2000;
102
3299
MissingFormLabel
- 10
Menasché O, Hagege A A, Scorsin N, Pouzet B, Desnos N, Duboc D, Schwartz K l, Vilquin J T, Marolleau J P.
Myoblast transplantation for heart failure.
Lancet.
2001;
357
279-280
MissingFormLabel
- 11
Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson S M, Li B, Pikkel J, Mc K ay R, Nadal-Ginard B, Bodine D M, Leri N, Anversa P.
Bone marrow cells regenerate infarcted myocardium.
Nature.
2001;
410
702-705
MissingFormLabel
- 12
Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, Sasaki K, Shimada T, Oike Y, Imaizumi T.
Mobilisation of endothelial progenitor cells in patients with acute myocardial infarction.
Circulation.
2001;
103
2776-2779
MissingFormLabel
- 13
Sechtem U.
Imaging myocardial area at rest and final infarct size.
Europ Heart J.
2001;
3
C36-C46
(Suppl C)
MissingFormLabel
- 14
Sussman M.
Cardiovascular biology: hearts and bones.
Nature.
2001;
410
640-641
MissingFormLabel
- 15
Strauer B E, Heidland U F, Heintzen M P, Schwartzkopff B.
Pharmacologic myocardial protection during percutaneous transluminal coronary angioplasty
by intracoronary application of dipyridamole: impact on hemodynamic function and
left ventricular performance.
J Am Coll Cardiol.
1996;
28
1119-1126
MissingFormLabel
- 16
Tomita S, Li R K, Weisel R D, Mickle D A, Kim E F, Sakai T, Jia F Q.
Autologous tranplantation of bone marrow cells improves damaged heart function.
Circulation.
1999;
100
247-256
MissingFormLabel
- 17
Wang J S, Sham-Tim D, Chedrany E, Eliopoulos N, Selipean J, Chin R CJ.
Marrow stromal cells for cellular cardiomyoblasty: the importance of microenviromment
for milieu dependent differentiation (abstr).
Circulation.
2000;
102
3300
MissingFormLabel
Correspondence
Prof. Dr. B E Strauer
Klinik für Kardiologie, Pneumonologie und Angiologie, Heinrich-Heine-Universität
Düsseldorf
Moorenstraße 5
40225 Düsseldorf
GERMANY