RSS-Feed abonnieren
DOI: 10.1055/s-0043-1775499
Hydrophilic α-Aryl-α-Diazoamides for Protein Esterification
A.O. was supported by postdoctoral fellowship F32 CA247259 (National Institutes of Health, NIH). A.M. was supported by the Undergraduate Research Opportunities Program at the Massachusetts Institute of Technology. Y.D.P. was supported by a National Science Foundation (NSF) Graduate Research Fellowship. This work was supported by grants R35 GM148220, R35 GM149532, and P30 CA014051 (NIH).

Abstract
Bioreversible protein esterification is a simple, customizable, and traceless strategy for the exogenous delivery of proteins into mammalian cells. Enabling this protein delivery strategy are α-aryl-α-diazoamides bearing a tolyl moiety. The aqueous solubility of the ensuing esterified protein is, however, often compromised, which can result in the loss of soluble esterified protein for downstream applications. Here, we undertook a structure–activity relationship campaign to generate hydrophilic diazoamides for use as protein esterification and cellular delivery agents. We find that the careful adjustment of the hydrogen-bond basicity of α-aryl-α-diazoamides is sufficient to engender soluble esterified proteins, as high hydrogen-bond basicity correlates with high aqueous solubility. Importantly, enhancing aqueous solubility of diazoamides should proceed pari passu with preserving their lipophilicity and reactivity towards esterification of carboxylic acids, as the best-performing diazoamide from our study contains an N-acetyl piperazine while retaining the tolyl moiety. Our efforts can inspire new generations of esterified proteins with better solubility.
Key words
cell - delivery - diazo compounds - esterification - hydrophilicity - hydrophobicity - proteins - solubilitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775499.
- Supporting Information
Publikationsverlauf
Eingereicht: 02. März 2025
Angenommen nach Revision: 17. Juni 2025
Artikel online veröffentlicht:
15. Juli 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Nagel YA, Raschle PS, Wennemers H. Angew. Chem. Int. Ed. 2016; 56: 122
- 1b Bolhassani A, Jafarzade BS, Mardani G. Peptides 2017; 87: 50
- 1c Sánchez-Navarro M. Adv. Drug. Delivery Rev. 2021; 171: 187
- 1d Saha A, Mandal S, Arafiles JV. V, Gómez-Gonzálex J, Hackenberger CP. R, Brik A. Angew. Chem. Int. Ed. 2022; 61: e202207551
- 2a Li W, Nicol F, Szoka FC. Jr. Adv. Drug Delivery Rev. 2004; 56: 967
- 2b Reshetnyak YK, Andreev OA, Lehnert U, Engelman DM. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 6460
- 2c Thévenin D, An M, Engelman DM. Chem. Biol. 2009; 16: 754
- 2d Cheng CJ, Bahal R, Babar IA, Pincus Z, Barrera F, Liu C, Svoronos A, Braddock DT, Glazer PM, Engelman DM, Saltzman WM, Slack FJ. Nature 2015; 518: 107
- 3a Rüssmann H, Shams H, Poblete F, Fu Y, Galán JE, Donis RO. Science 1998; 281: 565
- 3b Nishikawa H, Sato E, Briones G, Chen LM, Matsuo M, Nagata Y, Ritter G, Jäger E, Nomura H, Kondo S, Tawara I, Kato T, Shiku H, Old LJ, Galán JE, Gnjatic S. J. Clin. Invest. 2006; 116: 1946
- 3c Appelbaum JS, LaRochelle JR, Smith BA, Balkin DM, Holub JM, Schepartz A. Chem. Biol. 2012; 19: 819
- 3d Bachran C, Morley T, Abdelazim S, Fattah RJ, Liu S, Leppla SH. mBio 2013; 4: e00201
- 3e Schmit NE, Neopane K, Hantschel O. ACS Chem. Biol. 2019; 14: 916
- 4 Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Nat. Rev. Drug Discovery 2021; 20: 101
- 5 Mecke A, Lee DK, Ramamoorthy A, Orr BG, Holl MM. Langmuir 2005; 21: 8588
- 6a Gasparini G, Bang EK, Molinard G, Tulumello DV, Ward S, Kelley SO, Roux A, Sakai N, Matile S. J. Am. Chem. Soc. 2014; 136: 6069
- 6b Gasparini G, Sargsyan G, Bang EK, Sakai N, Matile S. Angew. Chem. Int. Ed. 2015; 54: 7328
- 6c Du S, Liew SS, Zhang CW, Du W, Lang W, Yao CC. Y, Li L, Ge J, Yao SQ. ACS Cent. Sci. 2020; 6: 2362
- 6d Guo J, Wan T, Li B, Pan Q, Xin H, Qiu Y, Ping Y. ACS Cent. Sci. 2021; 7: 990
- 7 Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Front. Pharmacol. 2015; 6: 286
- 8 Sun Y, Lau SY, Lim ZW, Chang SC, Ghadessy F, Partridge A, Miserez A. Nat. Chem. 2022; 14: 274
- 9a Akishiba M, Takeuchi T, Kawaguchi Y, Sakamoto K, Yu HH, Nakase I, Takatani-Nakase T, Madani F, Gräslund A, Futaki S. Nat. Chem. 2017; 9: 751
- 9b Shinga K, Iwata T, Murata K, Daitoku Y, Michibata J, Arafiles JV. V, Sakamoto K, Akishiba M, Takatani-Nakase T, Mizuno S, Sugiyama F, Imanishi M, Futaki S. Bioorg. Med. Chem. 2022; 61: 116728
- 9c Giancola JB, Grimm JB, Jun JV, Petri YD, Lavis LD, Raines RT. ACS Chem. Biol. 2024; 19: 908
- 10a Mix KA, Raines RT. Org. Lett. 2015; 17: 2358
- 10b Mix KA, Aronoff MR, Raines RT. ACS Chem. Biol. 2016; 11: 3233
- 10c Mix KA, Lomax JE, Raines RT. J. Am. Chem. Soc. 2017; 139: 14396
- 11 Ressler VT, Mix KA, Raines RT. ACS Chem. Biol. 2019; 14: 599
- 12 Jun JV, Petri YD, Erickson LW, Raines RT. J. Am. Chem. Soc. 2023; 145: 6615
- 13 Petri YD, Gutierrez CS, Raines RT. Angew. Chem. Int. Ed. 2023; 62: e202215614
- 14a Cheah KM, Jun JV, Wittrup KD, Raines RT. Mol. Pharm. 2022; 19: 3869
- 14b Maynard JR. J, Saidjalolov S, Velluz M.-C, Vossio S, Aumeier C, Moreau D, Sakai N, Matile S. ChemistryEurope 2023; 1: e202300029
- 15a Tanford C. In Physical Chemistry of Macromolecules . John Wiley & Sons; New York: 1961: 240
- 15b Arakawa T, Timasheff SN. Methods Enzymol. 1985; 114: 49
- 15c Shaw KL, Grimsley GR, Yakovlev GI, Makarov AA, Pace CN. Protein Sci. 2001; 10: 1206
- 15d Tokmakov AA, Kurotani A, Sato KI. Front. Mol. Biosci. 2021; 8: 775736
- 16a Zidovetzki R, Levitan I. Biochim. Biophys. Acta 2007; 1768: 1311
- 16b Kovacs T, Nagy P, Panyi G, Szente L, Varga Z, Zakany F. Pharmaceutics 2022; 14: 2559
- 17 Leo A, Hansch C, Elkins D. Chem. Rev. 1971; 6: 525
- 18 Laurence C, Brameld KA, Graton J, Le Questel JY, Renault E. J. Med. Chem. 2009; 52: 4073
- 19 Molinspiration Cheminformatics (Slovensky Grob, Slovakia) free web services (accessed July 7, 2025): https://www.molinspiration.com
- 20 All cLogP values reported herein represent the cLogP of the product of an esterification reaction between an α-aryl-α-diazoamide and acetic acid. Such simplified ester products should approximate the cLogP of the pendant esters on an esterified protein.
- 21a Myers EL, Raines RT. Angew. Chem. Int. Ed. 2009; 48: 2359
- 21b Chou H.-H, Raines RT. J. Am. Chem. Soc. 2013; 135: 14936
- 22 The conditions for GFP esterification and subsequent buffer exchange differed from those in ref. 10c.
- 23 Jun JV, Raines RT. Org. Lett. 2021; 23: 3110
- 24a Roberts JD, Watanabe W, McMahon RE. J. Am. Chem. Soc. 1951; 73: 760
- 24b McGrath NA, Raines RT. Chem. Sci. 2012; 3: 3237
- 25 Pédelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS. Nat. Biotechnol. 2006; 24: 79
- 26 This approximation represents a lower limit of the number of tolyl ester tags installed on the protein because the two esters have different contributions to the final observed mass of the esterified protein product and because of uncertainty in the number of pyridyl tags left on the protein at the end of the reaction workflow.
- 27a Ni H, Hatit MZ. C, Zhao K, Loughrey D, Lokugamage MP, Peck HE, Cid AD, Muralidharan A, Kim Y, Santangelo PJ, Dahlman JE. Nat. Commun. 2022; 13: 4766
- 27b Kim M, Jeong M, Lee G, Lee Y, Park J, Jung H, Im S, Yang JS, Kim K, Lee H. Bioeng. Transl. Med. 2023; 8: e10556
- 28 Das B, Baidya AT. K, Mathew AT, Yadav AK, Kumar R. Bioorg. Med. Chem. 2022; 56: 116614
- 29a Hausig F, Sobotta FH, Richter F, Harz DO, Traeger A, Brendel JC. ACS Appl. Mater. Interfaces 2021; 13: 35233
- 29b Zhang D, Atochina-Vasserman EN, Maurya DS, Liu M, Xiao Q, Lu J, Lauri G, Ona N, Reagan EK, Ni H, Weissman D, Percec V. J. Am. Chem. Soc. 2021; 143: 17975
- 30 Tomoda H, Kishimoto Y, Lee YC. J. Biol. Chem. 1989; 264: 15445
- 31 Zheng N, Shabek N. Annu. Rev. Biochem. 2017; 86: 129
- 32 Wilkinson KD, Audhya TK. J. Biol. Chem. 1981; 256: 9235
- 33 Vijay-Kumar S, Bugg CE, Cook WJ. J. Mol. Biol. 1987; 194: 531