Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis
DOI: 10.1055/s-0043-1775468
DOI: 10.1055/s-0043-1775468
paper
Diastereoselective Synthesis of 2-(Pyrrolidin-2-ylidene)-1H-indene-1,3-diones via 1,3-Dipolar Cycloaddition of H-Bond-Assisted Azomethine Ylides with Chalcones
We are grateful to the Research Council of the Tarbiat Modares University for support of this work.

Abstract
The diastereoselective synthesis of NH-unprotected pyrrolidin-2-ylidene derivatives was accomplished via 1,3-dipolar cycloaddition of H-bond-assisted azomethine ylides with chalcones. This process resulted in the formation of three stereogenic centers, exhibiting excellent diastereoselectivity. The effectiveness of this approach was illustrated through a gram-scale experiment, and the structure of the final product was confirmed by single-crystal X-ray analysis.
Key words
diastereoselective synthesis - pyrrolidin-2-ylidenes - Huisgen reaction - ninhydrin - chalconesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775468.
- Supporting Information
Publication History
Received: 30 December 2024
Accepted after revision: 11 March 2025
Article published online:
22 April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Bhat C, Tilve SG. RSC Adv. 2014; 4: 5405
- 1b Liu XC, Lai D, Liu QZ, Zhou L, Liu Q, Liu ZL. Molecules 2016; 21: 1665
- 1c Petri GL, Raimondi MV, Spanò V, Holl R, Barraja P, Montalbano A. Top. Curr. Chem. 2021; 379: 34
- 2a Hata T, Koga F, Sano Y, Kanamori K, Matsumae A, Sunagawa R, Hoshi T, Shima T, Ito S, Tomizawa S. J. Antibiot. 1954; 7A: 107
- 2b Coleman RS, Li J, Navarro A. Angew. Chem. Int. Ed. 2001; 40: 1736
- 3 Yokoi K, Nagaoka K, Nakashima T. Chem. Pharm. Bull. 1986; 34: 4554
- 4a Bräse S, Encinas A, Keck J, Nising CF. Chem. Rev. 2009; 109: 3903
- 4b Bräse S, Gläser F, Kramer CS, Lindner S, Linsenmeier AM, Masters KS, Meister AC, Ruff BM, Zhong S. Prog. Chem. Org. Nat. Prod. 2013; 97: 1
- 5 Takeuchi S, Ishibashi M, Kobayashi J. J. Org. Chem. 1994; 59: 3712
- 6 Butters M, Davies CD, Elliott MC, Hill-Cousins J, Kariuki BM, Ooi L.-L, Wood JL, Wordingham SV. Org. Biomol. Chem. 2009; 7: 5001
- 7 Bennett EL, Black GP, Browne P, Hizi A, Jaffar M, Leyland JP, Martin C, Oz-Gleenberg I, Murphy PJ, Roberts TD, Thornhill AJ, Vale SA. Tetrahedron 2013; 69: 3061
- 8a Huisgen R. Angew. Chem. Int. Ed. 1963; 2: 565
- 8b Breugst M, Reissig H.-U. Angew. Chem. Int. Ed. 2020; 59: 12293
- 9a Najera C, Sansano JM. Curr. Org. Chem. 2003; 7: 1105
- 9b Dubey S, Pal A, Roy S, Sasmal S, Tamrakar A, Jana R, Das T. New J. Chem. 2023; 47: 8997
- 10a Przydacz A, Bojanowski J, Albrecht A, Albrecht Ł. Org. Biomol. Chem. 2021; 19: 3075
- 10b Yavari I, Mohsenzadeh R, Ravaghi P, Safaei M. Org. Biomol. Chem. 2023; 21: 5265
- 10c Yavari I, Ghafouri K. Synthesis 2024; 56: 2403
- 11a Cheng F, Kalita SJ, Zhao Z.-N, Yang X, Zhao Y, Schneider U, Shibata N, Huang Y.-Y. Angew. Chem. Int. Ed. 2019; 58: 16637
- 11b Kalita FC, Cheng F, Fan Q.-H, Shibata N, Huang Y.-Y. J. Org. Chem. 2021; 86: 8695
- 12 Grigg R, Mongkolaussavaratana T. J. Chem. Soc., Perkin Trans. 1 1988; 541
- 13 CCDC 2403795 contains the supplementary crystallographic data for 3m. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 14 Upon completion of the reaction of the starting materials (1 mmol) to produce 3a, water (5 mL) was added, followed by dichloromethane (5 mL) to aid in the separation of the aqueous and organic layers. The product was extracted from the organic layer, yielding 3a (338 mg). Subsequently, silver nitrate (1 mmol) was dissolved in water (2 mL) and introduced to the aqueous phase, resulting in the formation of a white AgCN precipitate after 20 minutes. The precipitate was collected and dried, producing AgCN (92 mg). Considering the 72% efficiency of 3a, a theoretical yield of 96.4 mg of AgCN precipitate was anticipated, suggesting that about 95% of the cyanide ion was present in the aqueous phase and subsequently precipitated by silver.