Subscribe to RSS
DOI: 10.1055/s-0043-1775467
Electro-Oxidative Platform for Nucleophilic α-Functionalization of Ketones

Abstract
The significance of α-functionalization of carbonyl compounds arises from its frequent use in synthetic organic chemistry. Consequently, there is a substantial and constant demand for the creation of strategies that facilitate the efficient execution of such valuable transformation. In this context, herein is presented a universal electrochemical oxidative platform for the α-derivatization of ketones with nucleophiles, employing an umpolung reactivity. This approach has been successfully employed in three distinct transformations involving C–C and C–X bond formation via straightforward nucleophilic substitution or cycloaddition reaction pathways. Furthermore, the implementation of this methodology in flow using a commercially available reactor demonstrated its inherent scalability.
Key words
electrosynthesis - alpha-functionalization of carbonyls - umpolung - electrochemistry - flow chemistrySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775467.
- Supporting Information
Publication History
Received: 13 December 2024
Accepted after revision: 05 March 2025
Article published online:
09 April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 MacMillan DW. C, Watson AJ. B. Alpha-functionalization of carbonyl compounds, In Stereoselective Synthesis 3, Stereoselective Pericyclic Reactions Cross-coupling, and CH and CX Activation. Evans PA. Science of Synthesis; 2011. 3. 675-745
- 2 Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications, Vol. 1–3. Dalko PI. Wiley; New York: 2013
- 3 Kiefl GM, Gulder T. J. Am. Chem. Soc. 2020; 142: 20577
- 4 Sanz-Marco A, Martinez-Erro S, Pauze M, Gómez-Bengoa E, Martín-Matute B. Nat. Commun. 2019; 10: 5244
- 5 Spieß P, Shaaban S, Kaiser D, Maulide N. Acc. Chem. Res. 2023; 56: 5921
- 6 Uyanik M. Catalytic Oxidative α-Functionalization of Carbonyls. In Iodine Catalysis in Organic Synthesis. Ishihara K, Muñiz K. Wiley; New York: 2022: 275-298
- 7 de la Torre A, Tona V, Maulide N. Angew. Chem. Int. Ed. 2017; 56: 12416
- 8 Dong DQ, Hao SH, Wang ZL, Chen C. Org. Biomol. Chem. 2014; 12: 4278
- 9 Adler P, Teskey CJ, Kaiser D, Holy M, Sitte HH, Maulide N. Nat. Chem. 2019; 11: 329
- 10 Shono T, Okawa M, Nishiguchi I. J. Am. Chem. Soc. 1975; 97: 6144
- 11 Reddy SH. K, Chiba K, Sun Y, Moeller KD. Tetrahedron 2001; 57: 5183
- 12 Gnaim S, Takahira Y, Wilke HR, Yao Z, Li J, Delbrayelle D, Echeverria PG, Vantourout JC, Baran PS. Nat. Chem. 2021; 13: 367
- 13 Tang F, Moeller KD. Tetrahedron 2009; 65: 10863
- 14 Xu HC, Moeller KD. J. Am. Chem. Soc. 2010; 132: 2839
- 15 Xu HC, Moeller KD. Org. Lett. 2010; 12: 1720
- 16 Xu HC, Campbell JM, Moeller KD. J. Org. Chem. 2014; 79: 379
- 17 Sutterer A, Moeller KD. J. Am. Chem. Soc. 2000; 122: 5636
- 18 Reddy SH. K, Chiba K, Sun Y, Moeller KD. Tetrahedron 2001; 57: 5183
- 19 Jud W, Sommer F, Kappe CO, Cantillo D. J. Org. Chem. 2021; 86: 16026
- 20 Fujimoto K, Tokuda Y, Matsubara Y, Maekawa H, Mizuno T, Nishiguchi I. Tetrahedron Lett. 1995; 36: 7483
- 21 Wu F, Liu S, Lv X, Pan M, Liu X, Zhang J, Rong L. J. Org. Chem. 2023; 88: 13749
- 22 Charvet S, Médebielle M, Vantourout JC. J. Org. Chem. 2022; 87: 5690
- 23 Foley DJ, Waldmann H. Chem. Soc. Rev. 2022; 51: 4094
- 24 Bai Y, Davis DC, Dai M.. J. Org. Chem. 2017; 82: 2319
- 25 Ma K, Martin BS, Yin X, Dai M. Nat. Prod. Rep. 2019; 36: 174
- 26 Becker MR, Watson RB, Schindler CS. Chem. Soc. Rev. 2018; 47: 7867
- 27 Halland N, Jorgense KA, Marigo M, Braunton A, Bachman S, Fielenbach D. Patent WO 2005080298, 2005