Subscribe to RSS
DOI: 10.1055/s-0043-1775455
Advances in Organic Synthesis on Ionic Liquid Platforms: An Account of Indian Research Contributions
R.B. thanks Tezpur University for Institutional Fellowship to Ph.D. students.

Abstract
The exploration of ionic liquids, with their unique physicochemical and task specific properties, has made notable progress in organic synthesis highlighting their use as sustainable catalysts/solvents/bifunctional solvent-catalytic systems. This account presents a comprehensive survey of the development of sustainable organic synthesis using ionic liquid materials in India since 2000. The tunability of the properties of ionic liquids with their structural diversity is discussed together with the classification of ionic liquids material according to different aspects. The applications of ionic liquids are extensively review for a wide array of organic reactions, such as nucleophilic addition, elimination reactions, conjugate addition reactions, condensation, protection of functional groups, esterification, pericyclic reactions, coupling reactions, heterocycle synthesis, and miscellaneous reactions.
1 Introduction
2 Classification of Ionic Liquids
2.1 Based on Structure and Physicochemical Properties
2.2 Based on Reactivity of the Ionic Liquid
2.3 Based on the Number of Cations in the Ionic Liquid
2.4 Based on Functionality
3 Applications of Ionic Liquid Systems in Organic Synthesis
3.1 Nucleophilic Substitution
3.2 Elimination Reactions
3.3 Conjugate Addition Reactions
3.4 Condensation Reactions
3.5 Protection of Functional Groups
3.6 Esterification
3.7 Pericyclic Reactions
3.8 Coupling Reactions
3.9 Synthesis of Heterocycles
3.10 Miscellaneous Reactions
3.10.1 Nucleophilic Addition Reactions
3.10.2 Electrophilic Aromatic Substitution
3.10.3 Reductive Amination
3.10.4 Decarboxylation Reactions
3.10.5 Carbonylation Reactions
3.10.6 Rearrangement Reactions
3.10.7 Oxidation
4 Conclusion
Publication History
Received: 13 December 2024
Accepted after revision: 07 February 2025
Article published online:
03 June 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Lei Z, Chen B, Koo Y.-M, MacFarlane DR. Chem. Rev. 2017; 117: 6633
- 2 Qureshi ZS, Deshmukh KM, Bhanage BM. Clean Technol. Environ. Policy 2013; 8: 1487
- 3 Estager J, Holbrey JD, Swadźba-Kwaśny M. Chem. Soc. Rev. 2014; 43: 847
- 4 Amarasekara AS. Chem. Rev. 2016; 116: 6133
- 5 Vekariya RL. J. Mol. Liq. 2017; 227: 44
- 6 Zhuo Y, Cheng HL, Zhao YG, Cui HR. Pharmaceutics 2024; 16: 151
- 7 Buettner CS, Cognigni A, Schröder C, Bica-Schröder K. J. Mol. Liq. 2022; 347: 118160
- 8 Abbott AP, Frisch G, Ryder KS. Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 2008; 104: 21
- 9 Nikfarjam N, Ghomi M, Agarwal T, Hassanpour M, Sharifi E, Khorsandi D, Khan MA, Rossi F, Rossetti A, Zare EN, Rabiee N, Afshar D, Vosough M, Maiti TK, Mattoli V, Lichtfouse E, Tay FR, Makvandi P. Adv. Funct. Mater. 2021; 31: 2104148
- 10 Wilkes JS, Levisky JA, Wilson RA, Hussey CL. Inorg. Chem. 1982; 21: 1263
- 11 Gorke J, Srienc F, Kazlauskas R. Biotechnol. Bioeng. 2010; 15: 40
- 12 Tavares AP, Rodríguez O, Macedo EA. New Generations of Ionic Liquids Applied to Enzymatic Biocatalysis. In Ionic Liquids–New Aspects for the Future. Kadokawa J.-i. IntechOpen; London: 2013
- 13 Davis JH, Forrester KJ. Tetrahedron Lett. 1999; 40: 1621
- 14 Hough WL, Smiglak M, Rodríguez H, Swatloski RP, Spear SK, Daly DT, Pernak J, Grisel JE, Carliss RD, Soutullo MD, Davis JH. Jr. New J. Chem. 2007; 31: 1429
- 15 Turguła A, Stęsik K, Materna K, Klejdysz T, Praczyk T, Pernak J. RSC Adv. 2020; 10: 8653
- 16 MacFarlane DR, Chong AL, Forsyth M, Kar M, Vijayaraghavan R, Somers A, Pringle JM. Faraday Discuss. 2018; 206: 9
- 17 Singh SK, Savoy AW. J. Mol. Liq. 2020; 297: 112038
- 18 Al-Mohammed NN, Hussen RS. D, Ali TH, Alias Y, Abdullah Z. RSC. Adv. 2015; 5: 21865
- 19 Kumbhar A, Jadhav S, Shejwal R, Rashinkar G, Salunkhe R. RSC Adv. 2016; 6: 19612
- 20 Dutta AK, Gogoi P, Borah R. RSC Adv. 2014; 4: 41287
- 21 Visser AE, Swatloski RP, Reichert WM, Mayton R, Sheff S, Wierzbicki A, Davis JH. Jr, Rogers RD. Chem. Commun. 2001; 135
- 22 Figueiredo NM, Voroshylova LV, Ferreira ES. C, Marques JM. C, Cordeiro MN. D. S. Chem. Rev. 2024; 124: 3392
- 23 Yu S, Lindeman S, Tran CD. J. Org. Chem. 2008; 73: 2576
- 24 Yuan J, Antonietti M. Polymer 2011; 52: 1469
- 25 Kamal A, Chouhan G. Tetrahedron Lett. 2005; 46: 1489
- 26 Gupta N, Kad GL, Singh J. J. Mol. Catal. A: Chem. 2009; 302: 11
- 27 Singh R, Allam BK, Raghuvanshi DS, Singh KN. Tetrahedron 2013; 69: 1038
- 28 Jha AK, Jain N. Tetrahedron Lett. 2013; 54: 4738
- 29 Ranu BC, Jana R. J. Org. Chem. 2005; 70: 8621
- 30 Kumar R, Sharma A, Sharma N, Kumar V, Sinha AK. Eur. J. Org. Chem. 2008; 5577
- 31 Ranu BC, Banerjee S. Org. Lett. 2005; 7: 3049
- 32 Kantam ML, Neelima B, Reddy CV, Chakravarti R. Ind. Eng. Chem. Res. 2007; 46: 8614
- 33 Roy SR, Chakraborti AK. Org. Lett. 2010; 12: 3866
- 34 Boruah K, Borah R. ChemistrySelect 2019; 4: 3479
- 35 Das S, Parashar B, Saikia S, Borah R. ChemistrySelect 2020; 5: 3041
- 36 Yadav LS, Patel R, Rai VK, Srivastava VP. Tetrahedron Lett. 2007; 48: 7793
- 37 Darvatkar NB, Deorukhkar AR, Bhilare SB, Salunkhe MM. Synth. Commun. 2006; 36: 3043
- 38 Sahoo S, Joseph T, Halligudi SB. J. Mol. Catal. A: Chem. 2006; 244: 179
- 39 Cole AC, Jensen JL, Ntai I, Tran KL. T, Weaver KJ, Forbes DC, Davis JH. Jr. J. Am. Chem. Soc. 2002; 124: 5962
- 40 Saikia S, Gogoi P, Dutta AK, Sarma P, Borah R. J. Mol. Catal. A: Chem. 2016; 416: 63
- 41 Gogoi P, Boruah K, Borah R. ChemistrySelect 2018; 3: 9476
- 42 Gupta N, Sonu Sonu, Kad GL, Singh J. Catal. Commun. 2007; 8: 1323
- 43 Rathi JO, Shankarling G. ChemistrySelect 2020; 5: 6861
- 44 Nardi M, Luca GD, Novelli P, Oliverio M, Romano S, Procopio A. Green Chem. 2023; 25: 3208
- 45 Chankeshwara SV, Chakraborti AK. Synthesis 2006; 2784
- 46 Ishihara K, Hasegawa A, Yamamoto H. Angew. Chem. Int. Ed. 2001; 40: 4077
- 47 Sunitha S, Kanjilal S, Reddy PS, Prasad RB. N. Tetrahedron Lett. 2008; 49: 2527
- 48 Sarkar A, Roy SR, Parikh N, Chakraborti AK. J. Org. Chem. 2011; 76: 7132
- 49 Gui J, Cong X, Liu D, Zhang X, Hu Z, Sun Z. Catal. Commun. 2004; 5: 473
- 50 Joseph T, Sahoo S, Halligudi SB. J. Mol. Catal. A: Chem. 2005; 234: 107
- 51 Ganeshpure PA, Das J. React. Kinet. Catal. Lett. 2007; 92: 69
- 52 Ganeshpure PA, George G, Das J. ARKIVOC 2007; (viii): 273
- 53 Ganeshpure PA, George G, Das J. J. Mol. Catal. A: Chem. 2008; 279: 182
- 54 Kore R, Srivastava R. Catal. Commun. 2011; 12: 1420
- 55 Yadav JS, Reddy BV. S, Gayathri KU, Prasad AR. Synthesis 2002; 2537
- 56 Kumar A, Pawar SS. J. Org. Chem. 2007; 72: 8111
- 57 Boruah PR, Koiri MJ, Bora U, Sarma D. Tetrahedron Lett. 2014; 55: 2423
- 58 Hajjipour AR, Rafiee F. J. Iran. Chem. Soc. 2009; 6: 647
- 59 Chiappe C, Melai B, Sanzone A, Valentini G. Pure Appl. Chem. 2009; 81: 2035
- 60 Konwar M, Khupse ND, Saikia PJ, Sarma D. J. Chem. Sci. 2018; 130: 53
- 61 Palimkar SS, Siddiqui SA, Daniel T, Lahoti RJ, Srinivasan KV. J. Org. Chem. 2003; 68: 9371
- 62 Venkatesan K, Pujari SS, Lahoti RJ, Srinivasan KV. Ultrason. Sonochem. 2008; 15: 548
- 63 Khurana JM, Magoo D. Tetrahedron Lett. 2009; 50: 4777
- 64 Gupta AK, Kumari K, Singh N, Raghuvanshi DS, Singh KN. Tetrahedron Lett. 2012; 53: 650
- 65 Arya K, Rawat DS, Dandia A, Sasai H. J. Fluorine Chem. 2012; 137: 117
- 66 Chakraborti AK, Roy SR, Kumar D, Chopra P. Green Chem. 2008; 10: 1111
- 67 Chakraborty S, Paul B, De U C, Natarajan R, Majumdar S. RSC Adv. 2023; 13: 6747
- 68 Patil YP, Tambade PJ, Deshmukh KM, Bhanage BM. Catal. Today 2009; 148: 355
- 69 Khurana JM, Chaudhary A. Green Chem. Lett. Rev. 2012; 5: 633
- 70 Patel DS, Avalani JR, Raval DK. J. Braz. Chem. Soc. 2012; 23: 1951
- 71 Ying A.-G, Wang L.-M, Wang L.-L, Chen X.-Z, Ye W.-D. J. Chem. Res. 2010; 34: 30
- 72 Singh H, Sindhu J, Khurana JM, Sharma C, Aneja KR. Eur. J. Med. Chem. 2014; 77: 145
- 73 Dutta A, Damarla K, Kumar A, Saikia PJ, Sarma D. Tetrahedron Lett. 2020; 61: 151587
- 74 Wang D, Wang Y, Wan H, Wang J, Wang L. RSC Adv. 2018; 8: 10185
- 75 Singh V, Kaur S, Sapehiyia V, Singh J, Kad GL. Catal. Commun. 2005; 6: 57
- 76 Fraga-Dubreuil J, Bourahla K, Rahmouni M, Bazureau JP, Hamelin J. Catal. Commun. 2002; 3: 185
- 77 Khurana JM, Lumb A, Chaudhary A, Nand B. Synth. Commun. 2013; 43: 2147
- 78 Janardhan B, Vijaya LS, Rajitha B. J. Chem. Pharm. Res. 2012; 4: 519
- 79 Shaterian HR, Ranjbar M, Azizi K. J. Mol. Liq. 2011; 162: 95
- 80 Kore R, Srivastava R. J. Mol. Catal. A: Chem. 2011; 345: 117
- 81 Patil D, Chandam D, Mulik A, Patil P, Jagadale S, Kant R, Gupta V, Deshmukh M. Catal. Lett. 2014; 144: 949
- 82 Baruah K, Kalita S, Kashyap N, Bora DB, Paul S, Borah R. Mol. Diversity 2024; 28: 159
- 83 Das S, Paul S, Kashyap N, Saikia P, Borah R. ChemistrySelect 2024; 9: e202304103
- 84 Dadhania AN, Patel VK, Raval DK. Chem. Sci. J. 2012; 124: 921
- 85 Dadhania AN, Patel VK, Raval DK. C. R. Chim. 2012; 15: 378
- 86 Gogoi P, Dutta AK, Sarma P, Borah R. Appl. Catal. 2015; 492: 133
- 87 Phukan P, Kulshrestha A, Kumar A, Chakraborti S, Chattopadhyay P, Sarma D. J. Chem. Sci. 2021; 133: 131
- 88 Thawarkar SR, Khupse ND, Kumar A. ChemistrySelect 2017; 2: 6833
- 89 Kalita S, Kashyap N, Bora DB, Das S, Borah R. ChemistrySelect 2023; 8: e202204533
- 90 Bhosle MR, Shaikh MA, Nipate D, Khillare LD, Bondle GM, Sangshetti JN. Polycyclic Aromat. Compd. 2020; 40: 1175
- 91 Watile RA, Bagal DB, Deshmukh KM, Dhake KP, Bhanage BM. J. Mol. Catal. A: Chem. 2011; 351: 196
- 92 Nakhate AV, Yadav GD. ChemistrySelect 2018; 3: 4547
- 93 Nara SJ, Harjani JR, Salunkhe MM. J. Org. Chem. 2001; 66: 8616
- 94 Abdul-Sada AK, Greenway AM, Seddon KR, Welton T. Org. Mass Spectrom. 1993; 28: 759
- 95 Reddy PS, Kanjilal S, Sunitha S, Prasad RB. N. Tetrahedron Lett. 2007; 48: 8807
- 96 Sharma A, Kumar R, Sharma N, Kumar V, Sinha AK. Adv. Synth. Catal. 2008; 350: 2910
- 97 Khedkar MV, Sasaki T, Bhanage BM. ACS Catal. 2013; 3: 287
- 98 Kore R, Srivastava R. J. Mol. Catal. A: Chem. 2013; 376: 90
- 99 Bordoloi A, Sahoo S, Lefebvre F, Halligudi SB. J. Catal. 2008; 259: 232