RSS-Feed abonnieren
DOI: 10.1055/s-0043-1775422
Pyramidal Stereogenic Nitrogen Centers (SNCs)

Abstract
The configuration at a stereogenic nitrogen center (SNC) determines the spatial organization of a molecule as do stereogenic carbon centers or other stereochemical moieties. The contributions of SNCs to molecular function and their consideration in molecular design are rarely prominently presented. Underlying is the configurational lability of SNCs with a free electron pair and the scarcity of methods for the stereoselective synthesis of compounds with SNCs in general. In this review, we discuss methods to access compounds with configurationally stable SNCs and highlight some of the synthetically most relevant applications. We hope to draw attention to the potential of this stereochemical feature that can be present in diverse compounds such as N-oxides, oxaziridines, haloamines, ammonium ions, metal-bound amines, and constrained amines and amides.
1 Introduction
2 Some Historical Notes
3 Factors That Influence The Nitrogen Inversion Barrier
4 Preparation and Isolation of Compounds with Configurationally Stable Stereogenic Nitrogen Centers
5 Selected Applications of Compounds with Stereogenic Nitrogen Centers
6 Final Remarks
Publikationsverlauf
Eingereicht: 02. Juli 2024
Angenommen nach Revision: 29. Oktober 2024
Artikel online veröffentlicht:
05. Dezember 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Mislow K, Siegel J. J. Am. Chem. Soc. 1984; 106: 3319
- 2 Lehn JM. Top. Curr. Chem. 1970; 15: 311-377
- 3 Rauk A, Allen LC, Mislow K. Angew. Chem., Int. Ed. Engl. 1970; 9: 400
- 4 Lambert JB. Top. Stereochem. 1971; 6: 19-105
- 5 Kessler H. Naturwissenschaften 1971; 58: 46
- 6 Crabb TA, Katritzky AR. Conformational Equilibria in Nitrogen-Containing Saturated Six-Membered Rings. In Advances in Heterocyclic Chemistry, Vol. 36. Katritzky AR. Academic Press; Orlando: 1984: 1-173
- 7 Vystavkin N, Teskey C. Nachr. Chem. 2023; 71: 54
- 8 Davis FA, Jenkins RH. Jr. Synthesis and Utilization of Compounds with Chiral Nitrogen Centers . In Asymmetric Synthesis, Vol. 4. Morrison JD, Scott JW. Academic Press; San Diego: 1984: 313-353
- 9 Brückner S, Forni A, Moretti I, Torre G. J. Chem. Soc., Chem. Commun. 1982; 1218
- 10 Montanari F, Moretti I, Torre G. J. Chem. Soc. D 1969; 1086b
- 11 Prelog V, Wieland P. Helv. Chim. Acta 1944; 27: 1127
- 12 Rauk A, Andose JD, Frick WG, Tang R, Mislow K. J. Am. Chem. Soc. 1971; 93: 6507
- 13 Kostyanovsky RG, Schurig V, Lyssenko KA, Trapp O, Kadorkina GK, Kostyanovsky VR, Averkiev BB. Mendeleev Commun. 2004; 14: 306
- 14 Kostyanovsky RG, Kadorkina GK, Kostyanovsky VR, Schurig V, Trapp O. Angew. Chem. Int. Ed. 2000; 39: 2938
- 15 Kostyanovsky RG, Kadorkina GK, Voznesensky VN, Chervin II, Antipin MY, Lyssenko KA, Vorontzov EV, Bakhmutov VI, Rademacher P. Mendeleev Commun. 1996; 6: 69
- 16 Halpern B, Sargeson AM, Turnbull KR. J. Am. Chem. Soc. 1966; 88: 4630
- 17 Pope WJ, Peachey SJ. J. Chem. Soc., Trans. 1899; 75: 1127
- 18 Meisenheimer J. Ber. Dtsch. Chem. Ges. 1908; 41: 3966
- 19 Ieritano C, Le Blanc JC. Y, Schneider BB, Bissonnette JR, Haack A, Hopkins WS. Angew. Chem. Int. Ed. 2022; 61: e202116794
- 20 Feng G, Xu H, Li W, Zhang J. Inorg. Chem. Commun. 2018; 96: 81
- 21 Weston RE. Jr. J. Am. Chem. Soc. 1954; 76: 2645
- 22 Koeppl GW, Sagatys DS, Krishnamurthy GS, Miller SI. J. Am. Chem. Soc. 1967; 89: 3396
- 23 Rúnarsson ÖV, Artacho J, Wärnmark K. Eur. J. Org. Chem. 2012; 2012: 7015
- 24 Szostak M, Aubé J. Chem. Rev. 2013; 113: 5701
- 25 Adachi S, Kumagai N, Shibasaki M. Tetrahedron Lett. 2018; 59: 1147
- 26 Meng G, Zhang J, Szostak M. Chem. Rev. 2021; 121: 12746
- 27 Baechler RD, Mislow K. J. Am. Chem. Soc. 1970; 92: 3090
- 28 Albright TA, Burdett JK, Whangbo M.-H. Orbital Interactions in Chemistry, 2nd ed. John Wiley & Sons; Hoboken: 2013
- 29 Belostotskii AM, Markevich E. J. Org. Chem. 2003; 68: 3055
- 30 Rydberg P, Jørgensen MS, Jacobsen TA, Jacobsen A.-M, Madsen KG, Olsen L. Angew. Chem. Int. Ed. 2013; 52: 993
- 31 Steimbach RR, Tihanyi G, Géraldy MN. E, Wzorek A, Miller AK, Klika KD. Symmetry 2021; 13: 1753
- 32 Syrén P.-O. FEBS J. 2013; 280: 3069
- 33 Crowley PJ, Robinson MJ. T, Ward MG. J. Chem. Soc., Chem. Commun. 1974; 825
- 34 Zhang X, Kakde BN, Guo R, Yadav S, Gu Y, Li A. Angew. Chem. Int. Ed. 2019; 58: 6053
- 35 He W, Hu J, Wang P, Chen L, Ji K, Yang S, Li Y, Xie Z, Xie W. Angew. Chem. Int. Ed. 2018; 57: 3806
- 36 Hu B, Bezpalko MW, Fei C, Dickie DA, Foxman BM, Deng L. J. Am. Chem. Soc. 2018; 140: 13913
- 37 Zhang R, Xu S, Luo Z, Liu Y, Zhang J. Angew. Chem. Int. Ed. 2023; 62: e202213600
- 38 Corey EJ, Bakshi RK, Shibata S. J. Am. Chem. Soc. 1987; 109: 5551
- 39 Dolling UH, Davis P, Grabowski EJ. J. J. Am. Chem. Soc. 1984; 106: 446
- 40 Liu X, Lin L, Feng X. Acc. Chem. Res. 2011; 44: 574
- 41 Palone A, Casadevall G, Ruiz-Barragan S, Call A, Osuna S, Bietti M, Costas M. J. Am. Chem. Soc. 2023; 145: 15742
- 42 Touge T, Hakamata T, Nara H, Kobayashi T, Sayo N, Saito T, Kayaki Y, Ikariya T. J. Am. Chem. Soc. 2011; 133: 14960
- 43 Hoppe D, Zschage O. Angew. Chem., Int. Ed. Engl. 1989; 28: 69
- 44 Brown DR, Goldberg LI. Neuropharmacology 1985; 24: 181
- 45 Herchl R, Waser M. Tetrahedron 2014; 70: 1935
- 46 Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
- 47 Ooi T, Maruoka K. Angew. Chem. Int. Ed. 2007; 46: 4222
- 48 Hashimoto T, Maruoka K. Chem. Rev. 2007; 107: 5656
- 49 France S, Guerin DJ, Miller SJ, Lectka T. Chem. Rev. 2003; 103: 2985
- 50 Brak K, Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534
- 51 Genov GR, Douthwaite JL, Lahdenperä AS. K, Gibson DC, Phipps RJ. Science 2020; 367: 1246
- 52 Dorta R, Shimon L, Milstein D. J. Organomet. Chem. 2004; 689: 751
- 53 Novacek J, Waser M. Eur. J. Org. Chem. 2013; 2013: 637
- 54 Day DP, Sellars PB. Eur. J. Org. Chem. 2017; 2017: 1034
- 55 Ali KB. Russ. J. Org. Chem. 2021; 57: 638
- 56 A review about the history of chemical research on the stereochemical aspects of ammonium ions has been written by G. B. Kauffman.57 A substantial and highly readable historical note is also included in the article by R. G. Kostyanovsky and co-workers on the formation of hemihedral crystals from ammonium ions in the spirit of Pasteur and their spontaneous resolution.58 Both articles are recommended for readers who are interested in the competitive quest at the time.
- 57 Kauffman GB. Isis 1973; 64: 78
- 58 Kostyanovsky RG, Kostyanovsky VR, Kadorkina GK, Lyssenko KA. Mendeleev Commun. 2001; 11: 1
- 59 Le Bel J.-A. Bull. Soc. Chim. Fr. 1874; 22: 337
- 60 Van’t Hoff JH. Arch. Neerl. Sci. Exactes Nat. 1874; 9: 445
- 61 Hantzsch A, Werner A. Ber. Dtsch. Chem. Ges. 1890; 23: 11
- 62 Hantzsch A, Werner A. Ber. Dtsch. Chem. Ges. 1890; 23: 1243
- 63 Werner A. Z. Anorg. Chem. 1893; 3: 267
- 64 Pope WJ, Harvey AW. J. Chem. Soc. 1901; 79: 828
- 65 Wedekind E. Z. Phys. Chem. 1903; 45U: 235
- 66 Wedekind E, Fröhlich E. Ber. Dtsch. Chem. Ges. 1905; 38: 3438
- 67 Meisenheimer J, Angermann L, Finn O, Vieweg E. Ber. Dtsch. Chem. Ges. 1924; 57: 1744
- 68 Wyckoff RW. G. Z. Kristallogr. - Cryst. Mater. 1928; 67: 91
- 69 Le Bel JA. C. R. Hebd. Seances Acad. Sci. 1891; 112: 724
- 70 Harvey AW. J. Chem. Soc. 1905; 87: 1481
- 71 Le Bel JA. C. R. Hebd. Seances Acad. Sci. 1899; 129: 548
- 72 Wedekind E. Ber. Dtsch. Chem. Ges. 1899; 32: 3561
- 73 Le Bel JA. Ber. Dtsch. Chem. Ges. 1900; 33: 1003
- 74 Wedekind E. Ber. Dtsch. Chem. Ges. 1899; 32: 517
- 75 Wedekind E. Ber. Dtsch. Chem. Ges. 1902; 35: 178
- 76 Wedekind E. Ber. Dtsch. Chem. Ges. 1899; 32: 511
- 77 Wedekind E, Oechslen R. Ber. Dtsch. Chem. Ges. 1903; 36: 1158
- 78 Pope WJ, Read J. J. Chem. Soc. 1912; 101: 519
- 79 Wedekind E. Ber. Dtsch. Chem. Ges. 1905; 38: 1838
- 80 Thomas MB, Jones HO. J. Chem. Soc. 1906; 89: 280
- 81 Meisenheimer J. Justus Liebigs Ann. Chem. 1911; 385: 117
- 82 Meisenheimer J, Glawe H, Greeske H, Schorning A, Vieweg E. Justus Liebigs Ann. Chem. 1926; 449: 188
- 83 Dodonow J. J. Prakt. Chem. 1927; 117: 154
- 84 Wedekind E, Wedekind O. Ber. Dtsch. Chem. Ges. 1907; 40: 4450
- 85 Everatt RW, Jones HO. J. Chem. Soc. 1908; 93: 1789
- 86 Wedekind E, Paschke F. Ber. Dtsch. Chem. Ges. 1908; 41: 2659
- 87 Wedekind E, Mayer W. Ber. Dtsch. Chem. Ges. 1909; 42: 303
- 88 Wedekind E, Paschke F. Ber. Dtsch. Chem. Ges. 1911; 44: 1406
- 89 Von Halban H. Z. Elektrochem. Angew. Phys. Chem. 1907; 13: 57
- 90 Von Halban H. Ber. Dtsch. Chem. Ges. 1908; 41: 2417
- 91 Wedekind E, Maiser GL. Ber. Dtsch. Chem. Ges. 1928; 61: 1364
- 92 Wedekind E. Naturwissenschaften 1929; 17: 199
- 93 Wedekind E. Ber. Dtsch. Chem. Ges. 1906; 39: 474
- 94 Wedekind E, Wedekind O, Paschke F. Ber. Dtsch. Chem. Ges. 1908; 41: 1029
- 95 Wedekind E, Paschke F. Ber. Dtsch. Chem. Ges. 1910; 43: 1303
- 96 Kulchat S, Lehn J.-M. Chem. Asian J. 2015; 10: 2484
- 97 Kraft F. Ber. Dtsch. Chem. Ges. 1890; 23: 2780
- 98 Behrend R, König E. Justus Liebigs Ann. Chem. 1891; 263: 175
- 99 Kipping FS, Salway AH. J. Chem. Soc., Trans. 1904; 85: 438
- 100 Reychler A. Bull. Soc. Chim. Fr. 1902; 25: 279
- 101 Jones HO, Millington JP. Proc. Cambridge Philos. Soc. 1904; 12: 489
- 102 Meisenheimer J. Justus Liebigs Ann. Chem. 1920; 420: 190
- 103 Trapp O, Schoetz G, Schurig V. Chirality 2001; 13: 403
- 104 Kamuf M, Trapp O. Chirality 2011; 23: 113
- 105 Trapp O, Schurig V, Kostyanovsky RG. Chem. Eur. J. 2004; 10: 951
- 106 Schurig V, Bürkle W, Zlatkis A, Poole CF. Naturwissenschaften 1979; 66: 423
- 107 Reich S, Trapp O, Schurig V. J. Chromatogr. A 2000; 892: 487
- 108 Jung M, Schurig V. J. Am. Chem. Soc. 1992; 114: 529
- 109 Fröhlich E, Wedekind E. Ber. Dtsch. Chem. Ges. 1907; 40: 1646
- 110 Cope AC, Funke WR, Jones FN. J. Am. Chem. Soc. 1966; 88: 4693
- 111 Buckney F, Jones HO. J. Chem. Soc. 1907; 91: 1821
- 112 Meisenheimer J. Justus Liebigs Ann. Chem. 1922; 428: 252
- 113 Meisenheimer J. Justus Liebigs Ann. Chem. 1924; 438: 217
- 114 Hamada Y, Mukai S. Tetrahedron: Asymmetry 1996; 7: 2671
- 115 Goldberg SI, Lam F.-L. J. Am. Chem. Soc. 1969; 91: 5113
- 116 Kostyanovsky RG, Rudchenko VF, Shtamburg VG, Chervin II, Nasibov SS. Tetrahedron 1981; 37: 4245
- 117 Kostyanovsky RG, Rudchenko VF, D’Yachenko OA, Chervin II, Zolotoi AB, Atovmyan LO. Tetrahedron 1979; 35: 213
- 118 Rudchenko VF, D’Yachenko OA, Zolotoi AB, Atovmyan LO, Chervin II, Kostyanovsky RG. Tetrahedron 1982; 38: 961
- 119 Mintas M, Mannschreck A, Klasinc L. Tetrahedron 1981; 37: 867
- 120 Schurig V, Leyrer U. Tetrahedron: Asymmetry 1990; 1: 865
- 121 Boratyński PJ, Zielińska-Błajet M, Skarżewski J. In The Alkaloids, Vol. 82 2019; 29-145
- 122 Havinga E. Biochim. Biophys. Acta 1954; 13: 171
- 123 Kostyanovsky RG, Kostyanovsky VR, Kadorkina GK, Lyssenko KA. Mendeleev Commun. 2003; 13: 111
- 124 Trapp O, Schurig V. J. Am. Chem. Soc. 2000; 122: 1424
- 125 Révész Á, Schröder D, Rokob TA, Havlík M, Dolenský B. Angew. Chem. Int. Ed. 2011; 50: 2401
- 126 Wilen SH, Qi JZ, Williard PG. J. Org. Chem. 1991; 56: 485
- 127 Jameson DL, Field T, Schmidt MR, DeStefano AK, Stiteler CJ, Venditto VJ, Krovic B, Hoffman CM, Ondisco MT, Belowich ME. J. Org. Chem. 2013; 78: 11590
- 128 Jensen J, Wärnmark K. Synthesis 2001; 1873
- 129 Toda F, Mori K, Stein Z, Goldberg I. Tetrahedron Lett. 1989; 30: 1841
- 130 Tayama E, Tanaka H. Tetrahedron Lett. 2007; 48: 4183
- 131 Tayama E, Otoyama S, Tanaka H. Tetrahedron: Asymmetry 2009; 20: 2600
- 132 Walsh MP, Phelps JM, Lennon ME, Yufit DS, Kitching MO. Nature 2021; 597: 70
- 133 Wiberg KB, Bailey WF. J. Mol. Struct. 2000; 556: 239
- 134 Toda F, Tanaka K, Ueda H, Oshima T. J. Chem. Soc., Chem. Commun. 1983; 743
- 135 Grunwald E. J. Phys. Chem. 1963; 67: 2208
- 136 Fujita M, Yoshikawa Y, Yamatera H. Chem. Lett. 1976; 5: 959
- 137 Fujita M, Yoshikawa Y, Yamatera H. Bull. Chem. Soc. Jpn. 1977; 50: 3209
- 138 Buckingham DA, Marzilli LG, Sargeson AM. J. Am. Chem. Soc. 1967; 89: 825
- 139 Larsen S, Watson KJ, Sargeson AM, Turnbull KR. Chem. Commun. 1968; 847
- 140 Palmer JW, Basolo F. J. Inorg. Nucl. Chem. 1960; 15: 279
- 141 Buckingham DA, Marzilli LG, Sargeson AM. J. Am. Chem. Soc. 1967; 89: 3428
- 142 Buckingham DA, Marzilli PA, Sargeson AM. Inorg. Chem. 1967; 6: 1032
- 143 Buckingham DA, Marzilli LG, Sargeson AM. J. Am. Chem. Soc. 1968; 90: 6028
- 144 Tayama E, Sugawara T. Eur. J. Org. Chem. 2019; 2019: 803
- 145 Michon C, Goncalves-Farbos M.-H, Lacour J. Chirality 2009; 21: 809
- 146 Pirkle WH, Muntz RL, Paul IC. J. Am. Chem. Soc. 1971; 93: 2817
- 147 Pirkle WH, Rinaldi PL. J. Org. Chem. 1977; 42: 3217
- 148 Pirkle WH, Rinaldi PL. J. Org. Chem. 1978; 43: 4475
- 149 Hadley MR, Damani LA, Hutt AJ, Oldham HG, Murphy J, Camilleri P. Chromatographia 1993; 37: 487
- 150 Zaitseva S, Prescimone A, Köhler V. Org. Lett. 2023; 25: 1649
- 151 Betzenbichler G, Huber L, Krah S, Morkos MK, Siegle AF, Trapp O. Chirality 2022; 34: 732
- 152 Hadley MR, Oldham HG, Damani LA, Hutt AJ. Chirality 1994; 6: 98
- 153 Hadley MR, Švajdlenka E, Damani LA, Oldham HG, Tribe J, Camilleri P, Hutt AJ. Chirality 1994; 6: 91
- 154 Ottolina G, Bianchi S, Belloni B, Carrea G, Danieli B. Tetrahedron Lett. 1999; 40: 8483
- 155 Colonna S, Gaggero N, Drabowicz J, Łyżwa P, Mikołajczyk M. Chem. Commun. 1999; 1787
- 156 Suzuki I, Kerakawauchi R, Hirokawa T, Takeda K. Tetrahedron Lett. 2007; 48: 6873
- 157 Bhadra S, Yamamoto H. Angew. Chem. Int. Ed. 2016; 55: 13043
- 158 Zhang S, Yi D, Li G.-x, Deng Y, Cui X, Tian Y, Tang Z. ACS Catal. 2023; 13: 11954
- 159 Okuma K, Minato H, Kobayashi M. Bull. Chem. Soc. Jpn. 1980; 53: 435
- 160 Annunziata R, Fornasier R, Montanari F. J. Chem. Soc., Chem. Commun. 1972; 1133
- 161 Bucciarelli M, Forni A, Moretti I, Torre G. J. Org. Chem. 1983; 48: 2640
- 162 Bucciarelli M, Forni A, Moretti I, Prati F. Tetrahedron: Asymmetry 1990; 1: 5
- 163 Huang S, Wen H, Tian Y, Wang P, Qin W, Yan H. Angew. Chem. Int. Ed. 2021; 60: 21486
- 164 Ma C, Sun Y, Yang J, Guo H, Zhang J. ACS Cent. Sci. 2023; 9: 64
- 165 Yu T, Cheng S, Luo Y, Li J, Liang Y, Luo S, Zhu Q. ACS Catal. 2023; 13: 9688
- 166 Ravindra S, Irfana Jesin CP, Shabashini A, Nandi GC. Adv. Synth. Catal. 2021; 363: 1756
- 167 Williamson KS, Michaelis DJ, Yoon TP. Chem. Rev. 2014; 114: 8016
- 168 Della Sala G, Lattanzi A. ACS Catal. 2014; 4: 1234
- 169 Tachrim ZP, Wang L, Murai Y, Hashimoto M. Molecules 2021; 26
- 170 Jennings WB, Watson SP, Tolley MS. J. Am. Chem. Soc. 1987; 109: 8099
- 171 Lykke L, Rodríguez-Escrich C, Jørgensen KA. J. Am. Chem. Soc. 2011; 133: 14932
- 172 Olivares-Romero JL, Li Z, Yamamoto H. J. Am. Chem. Soc. 2012; 134: 5440
- 173 Uraguchi D, Tsutsumi R, Ooi T. J. Am. Chem. Soc. 2013; 135: 8161
- 174 Uraguchi D, Tsutsumi R, Ooi T. Tetrahedron 2014; 70: 1691
- 175 Takizawa S, Kishi K, Abozeid MA, Murai K, Fujioka H, Sasai H. Org. Biomol. Chem. 2016; 14: 761
- 176 Bjørgo J, Boyd DR. J. Chem. Soc., Perkin Trans. 2 1973; 1575
- 177 Boyd DR. Tetrahedron Lett. 1968; 9: 4561
- 178 Bucciarelli M, Forni A, Moretti I, Prati F. J. Chem. Soc., Chem. Commun. 1988; 1614
- 179 Bucciarelli M, Forni A, Moretti I, Torre G. J. Chem. Soc., Perkin Trans. 1 1980; 2152
- 180 Williamson KS, Yoon TP. J. Am. Chem. Soc. 2012; 134: 12370
- 181 Dong S, Liu X, Zhu Y, He P, Lin L, Feng X. J. Am. Chem. Soc. 2013; 135: 10026
- 182 Lin X, Ruan S, Yao Q, Yin C, Lin L, Feng X, Liu X. Org. Lett. 2016; 18: 3602
- 183 Novacek J, Izzo JA, Vetticatt MJ, Waser M. Chem. Eur. J. 2016; 22: 17339
- 184 Williamson KS, Sawicki JW, Yoon TP. Chem. Sci. 2014; 5: 3524
- 185 Lykke L, Halskov KS, Carlsen BD, Chen VX, Jørgensen KA. J. Am. Chem. Soc. 2013; 135: 4692
- 186 O’Neil IA, Miller ND, Peake J, Barkley JV, Low CM. R, Kalindjian SB. Synlett 1993; 515
- 187 For an extension of O’Neil’s work to the use of proline N-oxides to induce NO-γ-turns and NO-β-turns in tetrapeptides see: Farahani MD, Honarparvar B, Albericio F, Maguire GE. M, Govender T, Arvidsson PI, Kruger HG. Org. Biomol. Chem. 2014; 12: 4479
- 188 O’Neil IA, Miller ND, Barkley JV, Low CM. R, Kalindjian SB. Synlett 1995; 617
- 189 O’Neil IA, Miller ND, Barkley JV, Low CM. R, Kalindjian SB. Synlett 1995; 619
- 190 O’Neil IA, Turner CD, Kalindjian SB. Synlett 1997; 777
- 191 O’Neil IA, Potter AJ. Tetrahedron Lett. 1997; 38: 5731
- 192 O’Neil IA, Potter AJ. Chem. Commun. 1998; 1487
- 193 O’Neil IA, McConville M, Zhou K, Brooke C, Robertson CM, Berry NG. Chem. Commun. 2014; 50: 7336
- 194 O’Neil IA, Southern JM. Tetrahedron Lett. 1998; 39: 9089
- 195 O’Neil IA, Cleator E, Hone N, Southern JM, Tapolczay DJ. Synlett 2000; 1408
- 196 O’Neil IA, Cleator E, Southern JM, Hone N, Tapolczay DJ. Synlett 2000; 695
- 197 Booth J, Boyland E. Biochem. Pharm. 1970; 19: 733
- 198 Jenner P, Gorrod JW, Beckett AH. Xenobiotica 1973; 3: 563
- 199 Park SB, Jacob PIII, Benowitz NL, Cashman JR. Chem. Res. Toxicol. 1993; 6: 880
- 200 Jenner P, Gorrod JW, Beckett AH. Xenobiotica 1973; 3: 573
- 201 Damani LA, Pool WF, Crooks PA, Kaderlik RK, Ziegler DM. Mol. Pharm. 1988; 33: 702
- 202 Xu K, Nakazono K, Takata T. Tetrahedron Lett. 2016; 57: 4356
- 203 Ferey V, Vedrenne P, Toupet L, Le Gall T, Mioskowski C. J. Org. Chem. 1996; 61: 7244
- 204 Ferey V, Toupet L, Le Gall T, Mioskowski C. Angew. Chem. Int. Ed. 1996; 35: 430
- 205 Tayama E, Nishio R, Kobayashi Y. Org. Biomol. Chem. 2018; 16: 5833
- 206 Tayama E, Nakanome N. RSC Adv. 2021; 11: 23825
- 207 Azzena U, Dettori G, Pisano L, Musio B, Luisi R. J. Org. Chem. 2011; 76: 2291
- 208 Vedejs E, Kendall JT. J. Am. Chem. Soc. 1997; 119: 6941
- 209 Vedejs E, Bhanu Prasad AS, Kendall JT, Russel JS. Tetrahedron 2003; 59: 9849
- 210 Concellón JM, Suárez JR, García-Granda S, Díaz MR. Angew. Chem. Int. Ed. 2004; 43: 4333
- 211 Itsuno S, Hirao A, Nakahama S, Yamazaki N. J. Chem. Soc., Perkin Trans. 1 1983; 1673
- 212 Corey EJ, Helal CJ. Angew. Chem. Int. Ed. 1998; 37: 1986
- 213 Eschmann C, Song L, Schreiner PR. Angew. Chem. Int. Ed. 2021; 60: 4823
- 214 Pereira O, Ruth M, Gerbig D, Wende RC, Schreiner PR. J. Am. Chem. Soc. 2024; 146: 14576
- 215 Glaeske KW, West FG. Org. Lett. 1999; 1: 31
- 216 Arboré AP. A, Cane-Honeysett DJ, Coldham I, Middleton ML. Synlett 2000; 236
- 217 Tayama E, Nanbara S, Nakai T. Chem. Lett. 2006; 35: 478
- 218 Kawanishi N, Fujiwara K, Shirai N, Sato Y, Hatano K, Kurono Y. J. Chem. Soc., Perkin Trans. 1 1997; 3013
- 219 Kowalkowska A, Jończyk A. Tetrahedron 2015; 71: 9630
- 220 Jończyk A, Maurin JK, Moreń M, Kowalkowska A. ChemistrySelect 2021; 6: 5575
- 221 Cho H, Jeon H, Shin JE, Lee S, Park S, Kim S. Chem. Eur. J. 2019; 25: 2447
- 222 Cho H, Shin JE, Lee S, Jeon H, Park S, Kim S. Org. Lett. 2018; 20: 6121
- 223 Eckert PK, Golz C, Degen P, Werner C, Rehage H, Strohmann C. Chem. Eur. J. 2014; 20: 3268
- 224 Matusch R, Kreh M, Müller U. Helv. Chim. Acta 1994; 77: 1611
- 225 Lauber A, Zelenay B, Cvengroš J. Chem. Commun. 2014; 50: 1195
- 226 Kohrt S, Santschi N, Cvengroš J. Chem. Eur. J. 2016; 22: 390
- 227 Bao H, Tambar UK. [2,3]-Rearrangements of Ammonium Zwitterions. In Molecular Rearrangements in Organic Synthesis. Rojas CM. John Wiley & Sons; Hoboken: 2015: 459-496
- 228 Bao H, Qi X, Tambar UK. Synlett 2011; 1789
- 229 Markó I. The Stevens and Related Rearrangements . In Comprehensive Organic Synthesis, Vol. 3. Trost BM, Fleming I. Pergamon; Oxford: 1991: 913-974
- 230 Schwartz Z, Valiton C, Lovasz M, Roberts AG. Synthesis 2024; 56: 87
- 231 Moss SG, Pocock IA, Sweeney JB. Chem. Eur. J. 2017; 23: 101
- 232 Aggarwal VK, Fang GY, Charmant JP. H, Meek G. Org. Lett. 2003; 5: 1757
- 233 Sweeney JB. Chem. Soc. Rev. 2009; 38: 1027
- 234 Sweeney JB, Tavassoli A, Workman JA. Tetrahedron 2006; 62: 11506
- 235 Dunn JL, Stevens TS. J. Chem. Soc. 1934; 279
- 236 Thomson T, Stevens TS. J. Chem. Soc. 1932; 1932
- 237 Meisenheimer J. Ber. Dtsch. Chem. Ges. 1919; 52: 1667
- 238 Stevens TS, Creighton EM, Gordon AB, MacNicol M. J. Chem. Soc. 1928; 3193
- 239 Schöllkopf U, Patsch M, Schäfer H. Tetrahedron Lett. 1964; 5: 2515
- 240 Castagnoli N, Cymerman CJ, Melikian AP, Roy SK. Tetrahedron 1970; 26: 4319
- 241 Ollis WD, Rey M, Sutherland IO. J. Chem. Soc., Perkin Trans. 1 1983; 1009
- 242 Meisenheimer J, Greeske H, Willmersdorf A. Ber. Dtsch. Chem. Ges. 1922; 55: 513
- 243 Sommelet M. C. R. Hebd. Seances Acad. Sci. 1937; 205: 56
- 244 Kantor SW, Hauser CR. J. Am. Chem. Soc. 1951; 73: 4122
- 245 Baidilov D. Synthesis 2020; 52: 21
- 246 Hill RK. Chirality Transfer via Sigmatropic Rearrangements . In Asymmetric Synthesis, Vol. 3. Morrison JD. Academic Press; San Diego: 1984: 503-572
- 247 Hill RK, Chan T.-H. J. Am. Chem. Soc. 1966; 88: 866
- 248 Moriwaki M, Yamamoto Y, Oda J, Inouye Y. J. Org. Chem. 1976; 41: 300
- 249 Tayama E, Kimura H. Angew. Chem. Int. Ed. 2007; 46: 8869
- 250 Tuzina P, Somfai P. Org. Lett. 2009; 11: 919
- 251 Blid J, Panknin O, Somfai P. J. Am. Chem. Soc. 2005; 127: 9352
- 252 Soheili A, Tambar UK. J. Am. Chem. Soc. 2011; 133: 12956
- 253 Spoehrle SS. M, West TH, Taylor JE, Slawin AM. Z, Smith AD. J. Am. Chem. Soc. 2017; 139: 11895
- 254 Michon C, Sharma A, Bernardinelli G, Francotte E, Lacour J. Chem. Commun. 2010; 46: 2206
- 255 Sharma A, Guenee L, Naubron J.-V, Lacour J. Angew. Chem. Int. Ed. 2011; 50: 3677
- 256 Sharma A, Besnard C, Guenee L, Lacour J. Org. Biomol. Chem. 2012; 10: 966
- 257 Pujari SA, Guenee L, Lacour J. Org. Lett. 2013; 15: 3930
- 258 Pujari SA, Besnard C, Buergi T, Lacour J. Angew. Chem. Int. Ed. 2015; 54: 7520
- 259 Bosmani A, Guarnieri-Ibanez A, Goudedranche S, Besnard C, Lacour J. Angew. Chem. Int. Ed. 2018; 57: 7151
- 260 Bosmani A, Guarnieri-Ibáñez A, Lacour J. Helv. Chim. Acta 2019; 102: e1900021
- 261 Concellón JM, Bernad PL, Suárez JR. Chem. Eur. J. 2005; 11: 4492
- 262 Häner R, Olano B, Seebach D. Helv. Chim. Acta 1987; 70: 1676
- 263 Seebach D, Sting AR, Hoffmann M. Angew. Chem. Int. Ed. Engl. 1996; 35: 2708