RSS-Feed abonnieren
DOI: 10.1055/s-0043-1773539
Borenium-Catalyzed ‘Chain Walking’
The authors acknowledge the start-up funding (Project No. R9804) from the Hong Kong University of Science and Technology (HKUST), the Early Career Scheme from the Research Grants Council of Hong Kong (Project Number: 26307123), the National Science Fund of China (NSFC) Young Scholar Fund (Project Number: 22301254).

Abstract
‘Chain-walking’ chemistry, a catalytic process enabling the functionalization of remote positions in carbon chains, has traditionally relied on transition-metal catalysts to facilitate alkene isomerization and subsequent transformations. This Synpacts article reviews recent advancements in remote hydroboration via chain-walking pathways, highlighting transition-metal-catalyzed strategies for α-, β-, and terminal-selective borylation. Additionally, the isomerization of organoboron compounds and the emerging role of borenium species as transition-metal mimics in hydroboration and isomerization are discussed. In particular, we highlight our recent work on borenium-catalyzed ‘chain walking’ for remote functionalization, where we have unveiled a novel metal-free ‘functionalization-then-isomerization’ strategy.
1 Introduction
2 Background
2.1 Transition-Metal-Catalyzed Remote Hydroboration
2.2 Isomerization of Organoboron Compound
2.3 Borenium-Catalyzed Hydroboration of Internal Alkenes and Isomerization
3 Borenium-Catalyzed ‘Chain Walking’
3.1 ‘Boron-Walking’ Strategy Design
3.2 Reaction Scope
3.3 Synthetic Application
3.4 Mechanistic Study
4 Summary and Outlook
Publikationsverlauf
Eingereicht: 17. Februar 2025
Angenommen nach Revision: 23. März 2025
Artikel online veröffentlicht:
13. Mai 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Guan ZB, Cotts PM, McCord EF, McLain SJ. Science 1999; 283: 2059
- 2 Chen GH, Ma XS, Guan ZB. J. Am. Chem. Soc. 2003; 125: 6697
- 3 Kochi T, Hamasaki T, Aoyama Y, Kawasaki J, Kakiuchi F. J. Am. Chem. Soc. 2012; 134: 16544
- 4 Vasseur A, Bruffaerts J, Marek I. Nat. Chem. 2016; 8: 209
- 5 Sommer H, Juliá-Hernández F, Martin R, Marek I. ACS Cent. Sci. 2018; 4: 153
- 6 Janssen-Müller D, Sahoo B, Sun SZ, Martin R. Isr. J. Chem. 2020; 60: 195
- 7 Romano C, Martin R. Nat. Rev. Chem. 2024; 8: 833
- 8 Han J, Zeng LL, Fei QY, Ge YX, Huang RH, Chen FE. Chin. Chem. Lett. 2024 35.
- 9 Obligacion JV, Chirik PJ. J. Am. Chem. Soc. 2013; 135: 19107
- 10 Juliá-Hernández F, Moragas T, Cornella J, Martin R. Nature 2017; 545: 84
- 11 Wang Y, He YL, Zhu SL. Acc. Chem. Res. 2022; 55: 3519
- 12 Li YY, Yin GY. Acc. Chem. Res. 2023; 56: 3246
- 13 Yu XL, Zhao HN, Xi SB, Chen ZX, Wang XW, Wang L, Lin LQ. H, Loh KP, Koh MJ. Nat. Catal. 2020; 3: 585
- 14 Wang Q, Jung H, Kim D, Chang S. J. Am. Chem. Soc. 2023; 145: 24940
- 15 Wang Q, Kweon J, Kim D, Chang S. J. Am. Chem. Soc. 2024; 146: 31114
- 16 Mei TS, Patel HH, Sigman MS. Nature 2014; 508: 340
- 17 Kanno S, Kakiuchi F, Kochi T. J. Am. Chem. Soc. 2021; 143: 19275
- 18 Wu ZX, Meng JJ, Liu HK, Li YY, Zhang X, Zhang WB. Nat. Chem. 2023; 15: 988
- 19 Jankins TC, Martin-Montero R, Cooper P, Martin R, Engle KM. J. Am. Chem. Soc. 2021; 143: 14981
- 20 Seayad A, Ahmed M, Klein H, Jackstell R, Gross T, Beller M. Science 2002; 297: 1676
- 21 Zhang R, Yu TT, Dong GB. Science 2023; 382: 951
- 22 Bhoyare VW, Tathe AG, Gandon V, Patil NT. Angew. Chem. Int. Ed. 2023; 62: e202312786
- 23 Kapat A, Sperger T, Guven S, Schoenebeck F. Science 2019; 363: 391
- 24 Wang JW, Li Z, Liu DG, Zhang JY, Lu X, Fu Y. J. Am. Chem. Soc. 2023; 145: 10411
- 25 He YL, Liu C, Yu L, Zhu SL. Angew. Chem. Int. Ed. 2020; 59: 9186
- 26 Chen X, Cheng ZY, Guo J, Lu Z. Nat. Commun. 2018; 9: 3939
- 27 Li X, Jin JB, Chen PH, Liu GS. Nat. Chem. 2022; 14: 425
- 28 Li X, Yang XT, Chen PH, Liu GS. J. Am. Chem. Soc. 2022; 144: 22877
- 29 Wang SC, Liu L, Duan M, Xie WJ, Han JB, Xue YH, Wang Y, Wang XT, Zhu SL. J. Am. Chem. Soc. 2024; 146: 30626
- 30 Jia XQ, Huang Z. Nat. Chem. 2016; 8: 157
- 31 Hou CQ, Liu ZY, Gan L, Fan WZ, Huang L, Chen PH, Huang Z, Liu GS. J. Am. Chem. Soc. 2024; 146: 13536
- 32 Larionov E, Li HH, Mazet C. Chem. Commun. 2014; 50: 9816
- 33 Zhu Z, Chan WC, Gao B, Hu GW, Zhang PQ, Fu YY, Ly KS, Lin ZY, Quan YJ. J. Am. Chem. Soc. 2025; 147: 880
- 34 Scheuermann ML, Johnson EJ, Chirik PJ. Org. Lett. 2015; 17: 2716
- 35 Zhang Q, Wang SM, Yin JJ, Xiong T, Zhang Q. Angew. Chem. Int. Ed. 2022; 61: e202202713
- 36 Hu M, Ge SZ. Nat. Commun. 2020; 11: 765
- 37 Zhang MH, Ye ZY, Zhao WX. Angew. Chem. Int. Ed. 2023; 62: e202306248
- 38 Brown HC, Rao BC. S. J. Am. Chem. Soc. 1959; 81: 6434
- 39 Brown HC, Zweifel G. J. Am. Chem. Soc. 1966; 88: 1433
- 40 Lhermitte F, Knochel P. Angew. Chem. Int. Ed. 1998; 37: 2459
- 41 Bromm LO, Laaziri H, Lhermitte F, Harms K, Knochel P. J. Am. Chem. Soc. 2000; 122: 10218
- 42 Prokofjevs A, Boussonnière A, Li LF, Bonin H, Lacôte E, Curran DP, Vedejs E. J. Am. Chem. Soc. 2012; 134: 12281
- 43 De Vries TS, Prokofjevs A, Vedejs E. Chem. Rev. 2012; 112: 4246
- 44 Tan XY, Wang HD. Chem. Soc. Rev. 2022; 51: 2583
- 45 Tan XY, Wang X, Li ZH, Wang HD. J. Am. Chem. Soc. 2022; 144: 23286
- 46 Xu YL, Yang YZ, Liu YZ, Li ZH, Wang HD. Nat. Catal. 2023; 6: 16
- 47 Farrell JM, Hatnean JA, Stephan DW. J. Am. Chem. Soc. 2012; 134: 15728
- 48 Eisenberger P, Bestvater BP, Keske EC, Crudden CM. Angew. Chem. Int. Ed. 2015; 54: 2467
- 49 Légaré MA, Pranckevicius C, Braunschweig H. Chem. Rev. 2019; 119: 8231
- 50 Bose SK, Mao LJ, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. Chem. Rev. 2021; 121: 13238