RSS-Feed abonnieren
DOI: 10.1055/s-0043-1773533
Copper-Catalyzed Decarboxylative Phosphorylation of Coumarin-3-carboxylic Acids
R.N.G. is grateful to KCG, SHODH (Scheme of Developing High-Quality Research), Gujarat, India, for financial assistance.

Abstract
We report a novel, efficient, one-pot, copper-catalyzed, decarboxylative strategy for the cross-coupling of coumarin 3-carboxylic acids with H-phosphonates. The approach involves a decarboxylation followed by phosphonation through a radical pathway, and uses an inexpensive copper catalyst. Optimizations were carried out using various copper catalysts, oxidants, and solvents. The reaction is highly effective, with a broad functional-group tolerance, and affords good to excellent yields. This transformation provides a versatile and useful synthetic pathway for the construction of bioactive scaffolds with valuable C–P bonds.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1773533
- Supporting Information
Publikationsverlauf
Eingereicht: 11. Februar 2025
Angenommen nach Revision: 03. März 2025
Artikel online veröffentlicht:
02. April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Banerjee I, Panda TK. Org. Biomol. Chem. 2021; 19: 6571
- 2 Montchamp J.-L. J. Organomet. Chem. 2005; 690: 2388
- 3 Maddigan-Wyatt J, Hooper JF. Adv. Synth. Catal. 2021; 363: 924
- 4 Demkowicz S, Rachon J, Daśko M, Kozak W. RSC Adv. 2016; 6: 7101
- 5 Horsman GP, Zechel DL. Chem. Rev. 2017; 117: 5704
- 6 Queffélec C, Petit M, Janvier P, Knight DA, Bujoli B. Chem. Rev. 2012; 112: 3777
- 7 Glueck DS. Synlett 2007; 2627
- 8 Liu X, Zhou L, Yang R, Song X.-R, Xiao Q. Adv. Synth. Catal. 2023; 365: 2280
- 9 Qian P.-F, Li J.-Y, Zhou T, Shi B.-F. Synthesis 2022; 54: 4784
- 10 Niu Y.-N, Xia X.-F. Org. Biomol. Chem. 2022; 20: 7861
- 11a Schwan AL. Chem. Soc. Rev. 2004; 33: 218
- 11b Kanchana US, Diana EJ, Mathew TV, Anilkumar G. ChemistrySelect 2021; 6: 1579
- 12 Borges F, Roleira F, Milhazes N, Santana L, Uriarte E. Curr. Med. Chem. 2005; 12: 887
- 13 Al-Majedy YK, Kadhum AA. H, Al-Amiery AA, Mohamad AB. Syst. Rev. Pharm. 2017; 8: 62
- 14 Hassan MZ, Osman H, Ali MA, Ahsan MJ. Eur. J. Med. Chem. 2016; 123: 236
- 15 Grover J, Jachak SM. RSC Adv. 2015; 5: 38892
- 16 Rawat A, Reddy AV. B. Eur. J. Med. Chem. Rep. 2022; 5: 100038
- 17 Basly J.-P, Canivenc Lavier M.-C. Planta Med. 2005; 71: 287
- 18 Anand P, Singh B, Singh N. Bioorg. Med. Chem. 2012; 20: 1175
- 19 Borges Bubols G, da Rocha Vianna D, Medina-Remon A, von Poser G, Lamuela-Raventos RM, Eifler-Lima VL, Garcia SC. Mini-Rev. Med. Chem. 2013; 13: 318
- 20 Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W. Chem. Rev. 2019; 119: 10403
- 21 Venugopala KN, Rashmi V, Odhav B. Biomed. Res. Int. 2013; 2013: 963248
- 22 Budzisz E, Brzezinska E, Krajewska U, Rozalski M. Eur. J. Med. Chem. 2003; 38: 597
- 23 Jameel E, Umar T, Kumar J, Hoda N. Chem. Biol. Drug Des. 2016; 87: 21
- 24 Kasperkiewicz K, Ponczek MB, Owczarek J, Guga P, Budzisz E. Molecules 2020; 25: 1465
- 25 Sharifi-Rad J, Cruz-Martins N, López-Jornet P, Pons-Fuster Lopez E, Harun N, Yeskaliyeva B, Beyatli A, Sytar O, Shaheen S, Sharopov F, Taheri Y, Docea AO, Calina D, Cho WC. Oxid. Med. Cell. Longevity 2021; 2021: 6492346
- 26 Chen L, Liu X.-Y, Zou Y.-X. Adv. Synth. Catal. 2020; 362: 1724
- 27 Bojilova A, Nikolova R, Ivanov C, Rodios NA, Terzis A, Raptopoulou CP. Tetrahedron 1996; 52: 12597
- 28 Gelman D, Jiang L, Buchwald SL. Org. Lett. 2003; 5: 2315
- 29 Zhuang R, Xu J, Cai Z, Tang G, Fang M, Zhao Y. Org. Lett. 2011; 13: 2110
- 30 Patel DJ, Patel PP, Chikhalia KH. ChemistrySelect 2023; 8: e202301755
- 31 Hooshmand SE, Alavioon SI, Saeb M, Brahmachari G, Shiri M. Tetrahedron 2024; 167: 134238
- 32 Patra T, Maiti D. Chem. Eur. J. 2017; 23: 7382
- 33 Tripathi KN, Belal M, Singh RP. J. Org. Chem. 2019; 85: 1193
- 34 Rodríguez N, Goossen L. J. Chem. Soc. Rev. 2011; 40: 5030
- 35 Jin C, Zhang X, Sun B, Yan Z, Xu T. Synlett 2019; 30: 1585
- 36 Miao J, Ge H. Synlett 2014; 25: 911
- 37 Li H, Miao T, Wang M, Li P, Wang L. Synlett 2016; 27: 1635
- 38 Ghoghari RN, Chikhalia KH. J. Organomet. Chem. 2025; 1027: 123512
- 39 Correa A, Mancheño OG, Bolm C. Chem. Soc. Rev. 2008; 37: 1108
- 40 Soltani SS, Golshani M, Moghimi S, Farnia SM. F, Ketabforoosh SH. M. E, Akbarzadeh T, Foroumadi A. ChemistrySelect 2019; 4: 13695
- 41 Jafarpour F, Abbasnia M. J. Org. Chem. 2016; 81: 11982
- 42 Golshani M, Khoobi M, Jalalimanesh N, Jafarpour F, Ariafard A. Chem. Commun. 2017; 53: 10676
- 43 Jafarpour F, Darvishmolla M. Org. Biomol. Chem. 2018; 16: 3396
- 44 Jafarpour F, Darvishmolla M, Azaddoost N, Mohaghegh F. New J. Chem. 2019; 43: 9328
- 45 Messaoudi S, Brion J.-D, Alami M. Org. Lett. 2012; 14: 1496
- 46 Jafarpour F, Zarei S, Barzegar Amiri Olia M, Jalalimanesh N, Rahiminejadan S. J. Org. Chem. 2013; 78: 2957
- 47 Vardhan Reddy KH, Brion JD, Messaoudi S, Alami M. J. Org. Chem. 2016; 81: 424
- 48 Li M, Petersen JL, Hoover JM. Org. Lett. 2017; 19: 638
- 49 Hao S.-h, Li L.-X, Dong D.-Q, Wang Z.-L, Yu X.-Y. Tetrahedron Lett. 2018; 59: 4073
- 50 Chauhan PM, Morja MI, Asamdi M, Chikhalia KH. Tetrahedron Lett. 2022; 91: 153538
- 51 Patel DJ, Chikhalia KH. Tetrahedron Lett. 2024; 135: 154880
- 52 Compounds 3a–l; General Procedure The appropriate H-phosphinate 2 (0.30 mmol), CuCl (15 mol%), and DTBP (4.0 equiv) were added to a solution of the appropriate coumarin-3-carboxylic acid 1 53 (0.25 mmol) in MeCN (2 ml) in a glass reaction tube, and the resulting mixture was stirred at r.t. for 30 min under air. The mixture was then heated at 110 °C in an oil bath for 18 h until the reaction was complete (TLC). The resulting mixture was cooled to r.t. and poured into ice-cold water (10–15 mL). The mixture was extracted by EtOAc and brine (3 × 15 mL), and the organic layer was separated, dried (Na2SO4), filtered, and concentrated under reduced pressure. Finally, the crude residue was purified by column chromatography. Diethyl (2-Oxo-2H-chromen-3-yl)phosphonate (3a) Off-white solid; yield: 72%; mp 74–75 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.56 (d, J P–H = 17.1 Hz, 1 H), 7.57–7.66 (m, 2 H), 7.29-7.35 (m, 2 H), 4.20-4.33 (m, 4 H, 2CH2), 1.40 (t, J H–H = 7.0 Hz, 6 H, 2CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 157.89 (d, J P–C = 14.2 Hz), 155.71, 154.11 (d, J P–C = 6.7 Hz), 134.38, 129.65, 125.06, 119.21, 118.48 (d, J P–C = 14.1 Hz), 117.08 (d, J P–C = 19.9 Hz), 64.29 (d, J P–C= 6.1 Hz), 16.42 (d, J P–C = 6.2 Hz). HRMS (ESI): m/z [M + H]+ calcd for C13H16O5P: 283.0730; found: 283.0735.
- 53 Modh RP, Patel AC, Chikhalia KH. Heterocycl. Commun. 2013; 19: 343