RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2025; 36(14): 2049-2051
DOI: 10.1055/s-0043-1773528
DOI: 10.1055/s-0043-1773528
letter
Overcoming Substrate Bias in Radical Addition: Selective C3-Functionalisation of Indoles
Yizhe Lou and Maud Tregear acknowledge funding from AstraZeneca for a summer internship before their pursuit of a PhD.

Abstract
Radical chemistry provides complementary methods to traditional 2-electron mechanisms for indole functionalisation. Radical addition of electron-poor radicals to indoles is generally C2-selective. We hereby report that this substrate bias can be overcome through installing a bulky silyl group at the indole N–H bond, leading to a strategy for selective addition of electron-poor carbon-centred radicals at the 3-position.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1773528.
- Supporting Information
Publikationsverlauf
Eingereicht: 09. Januar 2025
Angenommen nach Revision: 14. Februar 2025
Artikel online veröffentlicht:
01. April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 New address: Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149 Münster, Germany.
- 2 New address: Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, UK.
- 3 Marshall CM, Federice JG, Bell CN, Cox PB, Njardarson JT. J. Med. Chem. 2024; 67: 11622
- 4 Festa AA, Vskressensky LG, Van de rEycken EV. Chem. Soc. Rev. 2019; 48: 4401
- 5 A rare and elegant report on selective radical addition to indoles at the 4- or 6-position: Shi X, Wang Z, Li Y, Li X, Li X, Shi D. Angew. Chem. Int. Ed. 2021; 60: 13871
- 6a Wang X, Yu M, Song H, Liu Y, Wang Q. Chem. Commun. 2022; 58: 9492
- 6b Yang Q.-Q, Marchni M, Xiao W.-J, Ceroni P, Bandini M. Chem. Eur. J. 2015; 21: 18052
- 7a Furst L, Matsuura BS, Narayanam JM. R, Tucker JW, Stephenson CR. J. Org. Lett. 2010; 12: 3104
- 7b Swift E, Williams TM, Stephenson CR. J. Synlett 2016; 27 754
- 7c Fuks E, Huber L, Schinkel T, Trapp O. Eur. J. Org. Chem. 2020; 6192
- 8 Li Y, Vaz RJ, Olson SH, Munson M, Paras NA, Conrad J. Eur. J. Org. Chem. 2020; 5828
- 9 Simchen G, Majchrak MW. Tetrahedron Lett. 1985; 26: 5035
- 10 For an example of using steric shielding to control regioselectivity of radical, please see: Choi J, Laudadio G, Godineau E, Baran PS. J. Am. Chem. Soc. 2021; 143: 11927
- 11 Su F, Lin W, Zhu P, He D, Lin J, Zhang H.-J, Wen T.-B. Adv. Synth. Catal. 2017; 359: 947
- 12 Parsaee F, Senarathna MC, Kannangara PB, Alexander SN, Arche PD. E, Welin ER. Nat. Rev. Chem. 2021; 5: 486
- 13 Please refer to the Supporting Information for details of optimisation.
- 14 General Procedure Lutidine (0.116 mL, 1.0 mmol, 2.0 equiv.), diethyl 2-bromolalonate (85 mL, 0.50 mmol, 1.0 equiv.), and CHCl3 (0.5 mL) were added to the indole (0.50 mmol, 1.0 equiv.) under a nitrogen atmosphere. The mixture was illuminated with a PennOC M2 photoreactor (365 nm, 100% LED strength, stirring rate: 500 rpm, 30 °C) for 24 h. The mixture was diluted with EtOAc (10 mL), washed with 2 M HCl (10 mL), brine (10 mL), dried over Na2SO4, filtered, and concentrated. The crude product was purified by column chromatography.
- 15 Rey-Rodriguez R, Petailleau P, Bonnet P, Gillaizeau I. Chem. Eur. J. 2015; 21: 3572
Examples:
Examples: