Subscribe to RSS
DOI: 10.1055/s-0043-1773527
Application of the Intramolecular Didehydro-Diels–Alder (IMDDA) Reaction for the Synthesis of Thieno[2,3-f]isoindole-4(8)-carboxylic Acids
This publication has been supported by the Russian Science Foundation (project no. 24-23-00212), see https://rscf.ru/project/24-23-00212/.

Abstract
The reaction of 3-(thienyl)propargylamines with maleic anhydride, followed by a domino sequence involving successive acylation/[4+2] cycloaddition steps, leads to the formation of the thieno[2,3-f]isoindole core. The key step, the intramolecular didehydro-Diels–Alder (IMDDA) reaction, proceeds with a high level of selectivity, yielding the target products – 7-oxo-5,6,7,8-tetrahydro-4H-thieno[2,3-f]isoindole-4(8)-carboxylic acids – in good yields. X-ray analysis and DFT calculations have revealed that the key step, the IMDDA reaction, proceeds via an exo transition allene state, resulting in the exclusive formation of a single isomer of the target heterocycle.
Key words
intramolecular didehydro-Diels–Alder reaction - propargylamine - IMDDA reaction - thieno[2,3-f]isoindole - thiophene - thienylacetyleneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1773527.
- Supporting Information
Publication History
Received: 27 September 2024
Accepted after revision: 10 February 2025
Article published online:
06 May 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Wessig P, Mueller G. Chem. Rev. 2008; 108: 2051
- 1b Johnson RP. J. Phys. Org. Chem. 2010; 23: 283
- 1c Li W, Zhou L, Zhang J. Chem. Eur. J. 2016; 22: 1558
- 1d Ajaz A, Bradley AZ, Burrell RC, Li WH. H, Daoust KJ, Bovee LB, DiRico KJ, Johnson RP. J. Org. Chem. 2011; 76: 9320
- 2a Krishna G, Grudinin DG, Nikitina EV, Zubkov FI. Synthesis 2022; 54: 797
- 2b Bober AE, Proto JT. Brummond K. M. Org. Lett. 2017; 19: 1500
- 2c Rana A, Paul I, Schmittel M. J. Phys. Org. Chem. 2017; 30: e3732
- 2d Wang T, Niu D, Hoye TR. J. Am. Chem. Soc. 2016; 138: 7832
- 2e Brummond KM. Kocsis L. S. Acc. Chem. Res. 2015; 48: 2320
- 2f Kocsis LS, Kagalwala HN, Mutto S, Godugu B, Bernhard S, Tantillo DJ, Brummond KM. J. Org. Chem. 2015; 80: 11686
- 2g Hoye TR, Baire B, Niu D, Willoughby PH, Woods BP. Nature 2012; 490: 208
- 2h Lima HM, Sivappa R, Yousufuddin M, Lovely CJ. Org. Lett. 2012; 14: 2274
- 2i Rodríguez D, Navarro A, Castedo L, Domínguez D, Saá C. Org. Lett. 2000; 2: 1497
- 3a Michael A, Bucher JE. Ber. Dtsch. Chem. Ges. 1895; 28: 2511
- 3b Bucher JE. J. Am. Chem. Soc. 1908; 30: 1244
- 3c Butz LW, Gaddis AM, Butz EW. J, Davis RE. J. Org. Chem. 1940; 5: 379
- 4a Chen X, Fontaine-Vive F, Poulain-Martini S, Michelet V. Catal. Commun. 2020; 147: 106117
- 4b Wang Z, Yamazaki S, Morimoto T, Takashima H, Nakaoku A, Shimizu M, Ogawa A. Org. Biomol. Chem. 2023; 21: 2172
- 4c Eghbali N, Eddy J, Anastas PT. J. Org. Chem. 2008; 73: 6932
- 4d Liu B, Wang H, Xie H, Zeng B, Chen J, Tao J, Wen TB, Cao Z, Xia H. Angew. Chem. Int. Ed. 2009; 48: 5430
- 4e Nieto-Oberhuber C, Perez-Galan P, Herrero-Gomez E, Lauterbach T, Rodriguez C, Lopez S, Bour C, Rosellon A, Cardenas DJ, Echavarren AM. J. Am. Chem. Soc. 2008; 130: 269
- 4f Martinez-Esperon MF, Rodriguez D, Castedo L, Saa C. Tetrahedron 2008; 64: 3674
- 4g Barluenga J, Fernandez-Rodriguez Manuel A, Garcia-Garcia P, Aguilar E. J. Am. Chem. Soc. 2008; 130: 2764
- 4h Wessig P, Mueller G, Pick C, Matthes A. Synthesis 2007; 464
- 4i Sato K, Menggenbateer, Kubota T, Asao N. Tetrahedron 2008; 64: 787
- 4j Dai M, Sarlah D, Yu M, Danishefsky SJ, Jones GO, Houk KN. J. Am. Chem. Soc. 2007; 129: 645
- 4k Gonzalez-Cantalapiedra E, de Frutos O, Atienza C, Mateo C, Echavarren AM. Eur. J. Org. Chem. 2006; 1430
- 4l Nieto-Oberhuber C, Lopez S, Echavarren AM. J. Am. Chem. Soc. 2005; 127: 6178
- 4m Martinez-Esperon MF, Rodriguez D, Castedo L, Saa C. Org. Lett. 2005; 7: 2213
- 4n Hayes ME, Shinokubo H, Danheiser RL. Org. Lett. 2005; 7: 3917
- 4o Rodriguez D, Martinez-Esperon Maria F, Navarro-Vazquez A, Castedo L, Dominguez D, Saa C. J. Org. Chem. 2004; 69: 3842
- 5a Klemm LH, Gopinath KW. J. Heterocycl. Chem. 1965; 2: 225
- 5b Klemm LH, Gopinath KW, Hsu Lee D, Kelly FW, Trod E, McGuire TM. Tetrahedron 1966; 22: 1797
- 5c Lu K, Luo T, Xiang Z, You Z, Fathi R, Chen J, Yang Z. J. Comb. Chem. 2005; 7: 958
- 5d Huang J, Du X, Hecke KV, Eycken EV. V, Pereshivko OP, Peshkov VA. Eur. J. Org. Chem. 2017; 4379
- 5e Cadby PA, Hearn MT. W, Ward AD. Aust. J. Chem. 1973; 26: 557
- 5f Herz H.-G, Schatz J, Maas G. J. Org. Chem. 2001; 66: 3176
- 5g Zhang L, Jin T, Guo Y, Martin AC, Sun K, Dudley GB, Yang J. J. Org. Chem. 2021; 86: 16716
- 5h Wang X, Yin J, Mao W, Wang Z, Wu S, You Y. Org. Lett. 2024; 26: 7757
- 6a Horak YI, Lytvyn RZ, Laba Y.-OV, Homza YV, Zaytsev VP, Nadirova MA, Nikanorova TV, Zubkov FI, Varlamov AV, Obushak MD. Tetrahedron Lett. 2017; 58: 4103
- 6b Nadirova MA, Laba Y.-OV, Zaytsev VP, Sokolova JS, Pokazeev KM, Anokhina VA, Khrustalev VN, Horak YI, Lytvyn RZ, Siczek M, Kinzhybalo V, Zubavichuse YV, Kuznetsov ML, Obushak MD, Zubkov FI. Synthesis 2020; 52: 2196
- 6c Yakovleva ED, Shelukho ER, Nadirova MA, Erokhin PP, Simakova DN, Khrustalev VN, Grigoriev MS, Novikov AP, Romanycheva AA, Shetnev AA, Bychkova OP, Trenin AS, Zubkov FI. Zaytsev V. P. Org. Biomol. Chem. 2024; 22: 2643
- 7 Jaroskova L, Linders J, Theodorus M, van der Veken L, Jozef E, Willemsens GH. M. Patent WO2006/24628, 2006
- 8 Xu Y, Wang Q, Wu Y, Zeng Z, Rudolph M, Hashmi AS. K. Adv. Synth. Catal. 2019; 361: 2309
- 9 Neese F. WIREs Comput. Mol. Sci. 2012; 2: 73
- 10 General Procedure for the Synthesis of Products 10a–l and Characterization Data Maleic anhydride (1 equiv) was added to the corresponding propargylamine 12 diluted in PhCH3 (3 mL). The resulting mixture was heated at reflux for 5 h and then cooled to room temperature. The resulting precipitate was filtered off, washed with PhCH3 (3 mL), Et2O (2 × 3 mL), and air dried to give the title acids 10a–n as colorful solid powders. 5-Oxo-6-phenyl-5,6,7,8-tetrahydro-4H-thieno[3,2-f]isoindole-4-carboxylic acid (10a) For the reaction 48 mg (0.225 mmol) of thienylpropargylamine 12a and 22 mg (0.225 mmol) of maleic anhydride were taken. Yield 31.5 mg (45%); colorful powder; mp 213–214 °C. 1H NMR (700.2 MHz, DMSO-d 6, 25 °C): δ = 12.77 (br s, 1 H, CO2H), 7.79 (d, J = 7.8 Hz, 2 H, H-2,6 Ph), 7.52 (d, J = 4.7 Hz, 1 H, H-Thien), 7.40 (d, J = 7.3 Hz, 2 H, H-3,5 Ph), 7.10 (m, 2 H, H-4Ph, H-Thien), 4.70 (d, J = 18.6 Hz, 1 H, NHCH2), 4.62 (d, J = 18.6 Hz, 1 H, NHCH2), 4.48 (br s, 1 H, CH), 3.91 (m, 2 H, CH2) ppm. 13C NMR (176.1 MHz, DMSO-d 6, 25 °C): δ = 171.9, 168.7, 150.0, 139.9, 132.9, 130.6, 129.5 (2 C), 129.2, 126.5, 125.3, 123.8, 118.4 (2 C), 53.0, 41.0, 25.9 ppm. IR (KBr): νmax = 1737 (СО2), 1650 (N–C = O) сm–1. MS (ESI): m/z 312 [M + H]+. Anal. Calcd for C17H13NO3S: C, 65.58; H, 4.21; N, 4.50; S, 10.30. Found: C, 65.27; H, 4.69; N, 4.81; S, 10.04.