Subscribe to RSS
DOI: 10.1055/s-0043-1773508
Recyclable Copper-Catalyzed Cascade Coupling/Condensation/ Deacylation Reaction of 2′-Halotrifluoroacetanilides with β-Keto Esters toward 2-(Trifluoromethyl)indoles
Authors
We thank the National Natural Science Foundation of China (No. 21664008) and Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education (No. KFSEMC-202206) for financial support.

Abstract
An efficient heterogeneous copper-catalyzed cascade coupling/condensation/deacylation reaction of 2′-halotrifluoroacetanilides with β-keto esters has been developed. The reaction proceeds smoothly in anhydrous dimethyl sulfoxide at 80–90 °C using Cs2CO3 as base and 10–20 mol% SBA-15-immobilized l-proline–CuI complex [SBA-15–l-Proline–CuI] as catalyst and provides a general and practical method for the assembly of a variety of polysubstituted 2-(trifluoromethyl)indoles in good to high yields. This heterogenized copper catalyst can be easily recovered via a simple centrifugation process and reused more than seven cycles with almost consistent catalytic activity.
Key words
copper - C–C coupling - 2-(trifluoromethyl)indoles - β-keto esters - heterogeneous catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1773508.
- Supporting Information (PDF)
Publication History
Received: 15 September 2024
Accepted after revision: 03 December 2024
Article published online:
10 January 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Usachev BI. J. Fluorine Chem. 2016; 185: 118
- 2a Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
- 2b Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 2c Humphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2875
- 2d Kaushik NK, Kaushik N, Attri P, Kumar N, Kim CH, Verma AK, Choi EH. Molecules 2013; 18: 6620
- 2e Zhang M.-Z, Chen Q, Yang G.-F. Eur. J. Med. Chem. 2015; 89: 421
- 3a Böhm H.-J, Banner D, Bendels S, Kansy M, Kuhn B, Müller K, Obst-Sander U, Stahl M. ChemBioChem 2004; 5: 637
- 3b Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 3c Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 3d Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 3e Nilsson BM. J. Med. Chem. 2006; 49: 4023
- 4a Akanmu MA, Songkram C, Kagechika H, Honda K. Neurosci. Lett. 2004; 364: 199
- 4b Fukuda Y, Furuta H, Kusama Y, Ebisu H, Oomori Y, Terashima S. J. Med. Chem. 1999; 42: 1448
- 4c Fukuda Y, Furuta H, Shiga F, Oomori Y, Kusama Y, Ebisu H, Terashima S. Bioorg. Med. Chem. Lett. 1997; 7: 1683
- 5 Fürstner A, Hupperts A. J. Am. Chem. Soc. 1995; 117: 4468
- 6 Miyashita K, Kondoh K, Tsuchiya K, Miyabe H, Imanishi T. J. Chem. Soc., Perkin Trans. 1 1996; 1261
- 7 Konno T, Chae J, Ishihara T, Yamanaka H. J. Org. Chem. 2004; 69: 8258
- 8 Ge F, Wang Z, Wan W, Hao J. Synlett 2007; 447
- 9a Iqbal T, Choi S, Ko E, Cho EJ. Tetrahedron Lett. 2012; 53: 2005
- 9b Nagib DA, MacMillan DW. C. Nature 2011; 480: 225
- 9c Kino T, Nagase Y, Ohtsuka Y, Yamamoto K, Uraguchi D, Tokuhisa K, Yamakawa T. J. Fluorine Chem. 2010; 131: 98
- 9d Mu X, Chen S, Zhen X, Liu G. Chem. Eur. J. 2011; 17: 6039
- 9e Chu L, Qing F.-L. J. Am. Chem. Soc. 2012; 134: 1298
- 9f Fennewald JC, Lipshutz BH. Green Chem. 2014; 16: 1097
- 9g He R.-Y, Zeng H.-T, Huang J.-M. Eur. J. Org. Chem. 2014; 4258
- 9h Mormino MG, Fier PS, Hartwig JF. Org. Lett. 2014; 16: 1744
- 10a Mejia E, Togni A. ACS Catal. 2012; 2: 521
- 10b Wiehn MS, Vinogradova EV, Togni A. J. Fluorine Chem. 2010; 131: 951
- 10c Shimizu R, Egami H, Nagi T, Chae J, Hamashima Y, Sodeoka M. Tetrahedron Lett. 2010; 51: 5947
- 10d Sodeoka M, Miyazaki A, Shimizu R, Egami H. Heterocycles 2012; 86: 979
- 10e Xu J, Luo D.-F, Xiao B, Liu Z.-J, Gong T.-J, Fu Y, Liu L. Chem. Commun. 2011; 47: 4300
- 10f Cheng Y, Yuan X, Ma J, Yu S. Chem. Eur. J. 2015; 21: 8355
- 11 Pedroni J, Cramer N. Org. Lett. 2016; 18: 1932
- 12 Dong X, Hu Y, Xiao T, Zhou L. RSC Adv. 2015; 5: 39625
- 13 Yamamoto Y, Ohkubo E, Shibuya M. Adv. Synth. Catal. 2017; 359: 1747
- 14 Ye Y, Cheung KP. S, He L, Tsui GC. Org. Lett. 2018; 20: 1676
- 15 Latham EJ, Stanforth SP. J. Chem. Soc., Perkin Trans. 1 1997; 2059
- 16 Chen Y, Wang Y, Sun Z, Ma D. Org. Lett. 2008; 10: 625
- 17a Girard C, Onen E, Aufort M, Beauviere S, Samson E, Herscovici J. Org. Lett. 2006; 8: 1689
- 17b Chassaing S, Sido AS. S, Alix A, Kumarraja M, Pale P, Sommer J. Chem. Eur. J. 2008; 14: 6713
- 17c Lipshutz BH, Taft BR. Angew. Chem. Int. Ed. 2006; 45: 8235
- 17d Wang D, Etienne L, Echeverria M, Moya S, Astruc D. Chem. Eur. J. 2014; 20: 4047
- 17e Yamada YM. A, Sarkar SM, Uozumi Y. J. Am. Chem. Soc. 2012; 134: 9285
- 17f Kantam ML, Reddy CV, Srinivas P, Bhargava S. In Topics in Organometallic Chemistry, Vol. 46. Taillefer M, Ma D. Springer; Heidelberg: 2013: 119-171
- 17g Guo Y, Zhu J, Wang Y, Li Y, Hu H, Zhang P, Xu J, Li W. ACS Catal. 2024; 14: 619
- 17h Ying B, Xu J, Zhu X, Shen C, Zhang P. ChemCatChem 2016; 8: 2604
- 17i Shen C, Xu J, Ying B, Zhang P. ChemCatChem 2016; 8: 3560
- 18a Benyahya S, Monnier F, Taillefer M, Wong Chi Man M, Bied C, Ouazzani F. Adv. Synth. Catal. 2008; 350: 2205
- 18b Benyahya S, Monnier F, Wong Chi Man M, Bied C, Ouazzani F, Taillefer M. Green Chem. 2009; 11: 1121
- 18c Phan NT. S, Nguyen TT, Nguyen VT, Nguyen KD. ChemCatChem 2013; 5: 2374
- 18d Shen C, Xu J, Yu W, Zhang P. Green Chem. 2014; 16: 3007
- 18e Zhao H, He W, Yao R, Cai M. Adv. Synth. Catal. 2014; 356: 3092
- 18f Magne V, Garnier T, Danel M, Pale P, Chassaing S. Org. Lett. 2015; 17: 4494
- 18g Zhao H, He W, Wei L, Cai M. Catal. Sci. Technol. 2016; 6: 1488
- 18h Pan S, Yan S, Osako T, Uozumi Y. ACS Sustainable Chem. Eng. 2017; 5: 10722
- 18i Schlimpen F, Placais C, Starck E, Bénéteau V, Pale P, Chassaing S. J. Org. Chem. 2021; 86: 16593
- 19a Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. Science 1998; 279: 548
- 19b Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD. J. Am. Chem. Soc. 1998; 120: 6024
- 20a Schuth F, Schmidt W. Adv. Eng. Mater. 2002; 4: 269
- 20b Wight AP, Davis ME. Chem. Rev. 2002; 102: 3589
- 20c Stein A. Adv. Mater. 2003; 15: 763
- 20d Rolison DR. Science 2003; 299: 1698
- 21 Zhang F, Yan Y, Yang H, Meng Y, Yu C, Tu B, Zhao D. J. Phys. Chem. B 2005; 109: 8723
- 22a Wu F, Feng Y, Jones CW. ACS Catal. 2014; 4: 1365
- 22b Rohani S, Ziarani GM, Badiei A, Ziarati A, Jafari M, Shayyesteh A. Appl. Organomet. Chem. 2018; 32: e4397
- 22c Nouri K, Hajjami M, Azadi G. Catal. Lett. 2018; 148: 671
- 22d Lai YT, Chen TC, Lan YK, Chen BS, You JH, Yang CM, Lai NC, Wu JH, Chen CS. ACS Catal. 2014; 4: 3824
- 22e Yang Y, Rioux RM. Chem. Commun. 2011; 47: 6557
- 22f Huo Y, Hu J, Lin S, Ju X, Wei Y, Huang Z, Hu Y, Tu Y. Appl. Organomet. Chem. 2019; 33: e4874
- 22g Zhao J, Yuan H, Qin X, Tian K, Liu Y, Wei C, Zhang Z, Zhou L, Fang S. Catal. Lett. 2020; 150: 2841
- 22h Yu H, Wu C, Wang S, Li T, Yin H. ACS Appl. Nano Mater. 2021; 4: 7213
- 23 Ye Q, Huang W, Wei L, Cai M. J. Org. Chem. 2023; 88: 2973
- 24 Lempers HE. B, Sheldon RA. J. Catal. 1998; 175: 62