Synthesis
DOI: 10.1055/s-0043-1763754
short review
Special Issue Flow Chemistry

Gas–Liquid Microchemical Oxidation for Continuous Synthesis Processes: A Short Review

Yu Chang
,
Yuyang Xing
,
Jian Deng
,
Zifei Yan
,
Guangsheng Luo
The authors gratefully acknowledge the financial support for this project from the National Natural Science Foundation of China (21991104).


Abstract

Gas–liquid oxidation processes, despite their wide application in the chemical industry, still pose considerable safety concerns. Microchemical technology has received high recognition for its intrinsic safety performance and process-intensification capability in hazardous reactions. This Short Review offers a comprehensive summary on how microchemical technology can be employed to achieve gas–liquid oxidation processes for continuous synthesis of chemicals in a safe, efficient, and controlled manner. Herein, we discuss the key aspects of gas–liquid dispersion and hydrodynamics, as well as mass transfer characteristics on microscale, and present representative gas–liquid oxidation cases in microflow reactors. Finally, the current challenges in industrial applications and potential academic research directions are presented.

1 Introduction

2 Microbubble Generation Technology for Gas–Liquid Oxidation Reactions

3 Hydrodynamic and Mass-Transfer Characteristics of Gas–Liquid Oxidation Microreactors

4 Gas–Liquid Oxidation Reactions in Microreactors

5 Conclusion and Outlook



Publication History

Received: 06 March 2024

Accepted after revision: 11 April 2024

Article published online:
02 May 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Gavriilidis A, Constantinou A, Hellgardt K, Hii KK, Hutchings GJ, Brett GL, Kuhn S, Marsden SP. React. Chem. Eng. 2016; 1: 595
  • 2 Siddiquee MN, Hossain MM, Nazemifard N. Chem. Rec. 2022; 22: e202200022
  • 3 Gemoets HP. L, Su YH, Shang MJ, Hessel V, Luque R, Noël T. Chem. Soc. Rev. 2016; 45: 83
  • 4 Friedland J, Guttel R. J. Flow Chem. 2021; 11: 625
  • 5 Kockmann N, Thenee P, Fleischer-Trebes C, Laudadio G, Noël T. React. Chem. Eng. 2017; 2: 258
  • 6 Hone CA, Kappe CO. Top. Curr. Chem. 2019; 377: 7
  • 7 deMello AJ. Nature 2006; 442: 394
  • 8 Whitesides GM. Nature 2006; 442: 368
  • 9 Zhang H, Bai YP, Zhu N, Xu JH. Chin. J. Chem. Eng. 2021; 30: 136
  • 10 Hyodo M, Iwano H, Kasakado T, Fukuyama T, Ryu I. Micromachines 2021; 12: 1307
  • 11 Jähnisch K, Hessel V, Löwe H, Baerns M. Angew. Chem. Int. Ed. 2004; 43: 406
  • 12 Yan ZF, Tian JX, Du CC, Deng J, Luo GS. Chin. J. Chem. Eng. 2022; 41: 49
  • 13 Sheng L, Wang K, Deng J, Chen GW, Luo GS. Curr. Opin. Chem. Eng. 2023; 40: 100917
  • 14 Sheng L, Chang Y, Deng J, Luo GS. Ind. Eng. Chem. Res. 2022; 61: 2623
  • 15 Morais S, Lobo CE. D, Padilha CE. D, Souza DF. D, de Souza JR, de Oliveira JA, Ruiz JA. C. Ind. Eng. Chem. Res. 2021; 60: 11590
  • 16 Montessori A, Lauricella M, Tiribocchi A, Succi S. Phys. Rev. Fluids 2019; 4: 072201
  • 17 Svetlov SD, Abiev RS. Chem. Eng. J. 2018; 354: 269
  • 18 Wang K, Lu YC, Xu JH, Tan J, Luo GS. AIChE J. 2011; 57: 299
  • 19 Sheng L, Chen YC, Deng J, Luo GS. AIChE J. 2021; 67: e17376
  • 20 Song J, Sheng L, Cui Y, Wang S, Wang Y, Deng J, Luo G. Chem. Eng. Sci. 2022; 258: 117746
  • 21 Tan J, Du L, Xu JH, Wang K, Luo GS. AIChE J. 2011; 57: 2647
  • 22 Leclerc A, Alamé M, Schweich D, Pouteau P, Delattre C, de Bellefon C. Lab Chip 2008; 8: 814
  • 23 Song J, Du CC, Wang JJ, Cui YJ, Wang YJ, Deng J, Luo GS. React. Chem. Eng. 2022; 7: 2322
  • 24 Wang JJ, Song J, Sheng L, Deng J, Luo GS. Ind. Eng. Chem. Res. 2023; 62: 1695
  • 25 Chang Y, Sheng L, Wang JJ, Deng J, Luo GS. Lab Chip 2023; 23: 4888
  • 26 Wang K, Wang YJ, Chen GG, Luo GS, Wang JD. Ind. Eng. Chem. Res. 2007; 46: 6092
  • 27 Chen GG, Luo GS, Xu JH, Wang JD. Powder Technol. 2004; 139: 180
  • 28 Tan J, Xu JH, Wang K, Luo GS. Ind. Eng. Chem. Res. 2010; 49: 10040
  • 29 Xie BQ, Zhou CJ, Huang XT, Chen JX, Ma XD, Zhang JS. Ind. Eng. Chem. Res. 2021; 60: 8579
  • 30 Lu YH, Sheng X, Zhang J, Wang YJ, Du L, Zhu JQ. Chem. Eng. Process. Process Intensif. 2022; 174: 108861
  • 31 Venezia B, Gavriilidis A. Green Chem. 2023; 25: 5449
  • 32 Haase S, Murzin DY, Salmi T. Chem. Eng. Res. Des. 2016; 113: 304
  • 33 Triplett KA, Ghiaasiaan SM, Abdel-Khalik SI, Sadowski DL. Int. J. Multiphase Flow 1999; 25: 377
  • 34 Sheng L, Chang Y, Wang JJ, Deng J, Luo GS. Chem. Eng. Sci. 2024; 285: 119563
  • 35 Meyer C, Hoffmann M, Schlüter M. Int. J. Multiphase Flow 2014; 67: 140
  • 36 Sheng L, Chang Y, Deng J, Luo GS. Chem. Eng. J. 2023; 454: 140407
  • 37 Sheng L, Chang Y, Wang JJ, Deng J, Luo GS. AIChE J. 2023; 69: e18089
  • 38 Vanoye L, Pablos M, Smith N, de Bellefon C, Favre-Réguillon A. RSC Adv. 2014; 4: 57159
  • 39 Brzozowski M, O’Brien M, Ley SV, Polyzos A. Acc. Chem. Res. 2015; 48: 349
  • 40 Yang L, Jensen KF. Org. Process Res. Dev. 2013; 17: 927
  • 41 Zhang JS, Teixeira AR, Zhang HM, Jensen KF. Anal. Chem. 2017; 89: 8524
  • 42 Munirathinam R, Huskens J, Verboom W. Adv. Synth. Catal. 2015; 357: 1093
  • 43 Li CS, Zhang HC, Liu WX, Sheng L, Cheng MJ, Xu BJ, Luo GS, Lu Q. Nat. Commun. 2024; 15: 884
  • 44 Zhang JS, Teixeira AR, Kögl LT, Yang L, Jensen KF. AIChE J. 2017; 63: 4694
  • 45 Liu W, Xie BQ, Luo J, Zhang CH, Zhang JS. AIChE J. 2023; 69: e18200
  • 46 Zhang X, Chen Z, Chen J, Xu J. Chem. Eng. Sci. 2024; 288: 119777
  • 47 Hommes A, Disselhorst B, Yue J. AIChE J. 2020; 66: e17005
  • 48 Liu P, Ge HW, Lu YH, Wang YJ, Du L, Zhu JQ. Chem. Eng. Sci. 2022; 248: 117166
  • 49 Zhang CH, Duan XN, Yin JB, Lou FY, Zhang JS. React. Chem. Eng. 2022; 7: 1289
  • 50 Zhang CH, Luo J, Xie BQ, Liu W, Zhang JS. Chem. Eng. J. 2023; 468: 143674
  • 51 Su YH, Hessel V, Noël T. AIChE J. 2015; 61: 2215
  • 52 Chen Q, Ullah S, Wang YJ, Luo GS. Chem. Eng. J. 2023; 464: 142758