Synthesis 2023; 55(16): 2415-2426
DOI: 10.1055/s-0042-1751450
review

Preparation of N- and C-Functionally-Substituted Glutarimides: A Review

,
Nikita M. Chernov
,
Elena V. Kuvaeva
,
Igor P. Yakovlev
The work was carried out within the framework scientific project (No AAAA-A20-120121790030-8).


Abstract

Six-membered heterocyclic systems such as glutarimides are widely used in medicinal chemistry. The glutarimide skeleton is found in many commercially available pharmaceuticals due to a wide range of bioactivity. The preparation of C,N-highly functionalized glutarimides is an important topic in modern organic synthesis, since it reveals the ability to build a more complex system and thus expands the range of various drugs. This review describes approaches to the synthesis of N- and C-functionally-substituted glutarimides presented in the literature from 2005 to 2022. Options for the enantioselective synthesis of spiroglutarimides, the use of organocatalysis in the synthesis of glutarimides, and optimization of the synthesis of already known pharmaceuticals are described.

1 Introduction

2 Michael Addition

2.1 Preparation of Glutarimides from Substituted Acrylamides and 1,3-Bielectrophiles

2.2 Preparation of Glutarimides by the Reaction of Acetamide and α,β-Unsaturated Carbonyl Compounds

2.2.1 Preparation of Glutarimides by the Reaction of Acetamide Derivatives and Acrolein Derivatives

2.2.2 Preparation of Spiroglutarimides by the Reaction of Acetamide Derivatives and Bromacrolein Derivatives

2.2.3 Preparation of Spiroglutarimides by the Reaction of Acetamide Derivatives and Acryloyl Cyanide Derivatives

2.2.4 Preparation of Substituted Glutarimides Using Ytterbium Salts

2.3 Michael Addition/Intramolecular Transacylation

2.4 Preparation of Glutarimides from Baylis–Hillman Adducts

3 Multicomponent Reactions

4 Conclusion



Publication History

Received: 15 February 2023

Accepted after revision: 29 March 2023

Article published online:
10 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Moreira AL, Corral LG, Ye W, Johnson B, Stirling D, Muller GW, Kaplan G. AIDS Res. Hum. Retroviruses 1997; 13: 857
  • 2 Waelbroeck M, Lazareno S, Pfaff O, Friebe T, Tastenoy M, Mutschler E, Lambrecht G. Br. J. Pharmacol. 1996; 119: 1319
    • 3a Yamada T, Okada T, Sakaguchi K, Ohfune Y, Ueki H, Soloshonok VA. Org. Lett. 2006; 8: 5625
    • 3b Capitosti SM, Hansen TP, Brown ML. Org. Lett. 2003; 5: 2865
    • 3c Xiao Z, Schaefer K, Firestine S, Li PK. J. Comb. Chem. 2002; 4: 149
  • 4 Gaul C, Njardarson JT, Shan D, Dorn DC, Wu KD, Tong WP, Danishefsky SJ. J. Am. Chem. Soc. 2004; 126: 11326
  • 5 Grieco PA, Henry KJ, Nunes JJ, Matt JE. J. Chem. Soc. 1992; 4: 368
    • 6a Dictionary of Drugs . Elks J, Ganellin CR. Chapman and Hall; London: 1990: 70
    • 6b Dictionary of Drugs . Elks J, Ganellin CR. Chapman and Hall; London: 1990: 281
    • 6c Dictionary of Drugs . Elks J, Ganellin CR. Chapman and Hall; London: 1990: 960
  • 7 Tsuda H, Sugihara S, Nishida H, Hara H, Eriguchi N, Ishii K, Tanaka N. Jpn. J. Cancer Res. 1992; 83: 527
    • 8a Michalska D. J. Mol. Struct. 1991; 231: 357
    • 8b Bieńko DC, Michalska D, Roszak S, Wojciechowski W, Nowak MJ, Lapinski L. J. Phys. Chem. A 1997; 101: 7834
    • 8c Michalska D. Spectrochim. Acta, Part A 1993; 49: 303
    • 8d Stephens TD. Teratology 1988; 38: 229
    • 8e Schuler U, Ehninger G. Drug Safety 1995; 12: 364
    • 8f Günzler V. Drug Safety 1992; 7: 116
  • 9 Windebank AJ, Grisold W. J. Peripher. Nerv. Syst. 2008; 13: 27
  • 10 Zeng S, Huang W, Zheng X, Zhang Z, Wang J, Shen Z. Eur. J. Med. Chem. 2021; 210: 112981
    • 11a Min J, Mayasundari A, Keramatnia F, Jonchere B, Yang SW, Jarusiewicz J, Rankovic Z. Angew. Chem. Int. Ed. 2021; 60: 26663
    • 11b Asatsuma-Okumura T, Ito T, Handa H. Pharmacol. Ther. 2019; 202: 132
  • 12 Meng G, Zhang J, Szostak M. Chem. Rev. 2021; 121: 12746
    • 13a Reddy PY, Kondo S, Toru T, Ueno Y. J. Org. Chem. 1997; 62: 2652
    • 13b David B, Margaret AB, Leod M. Synthesis 2003; 656
    • 13c Abdel-Aziz AA. M. Eur. J. Med. Chem. 2007; 42: 614
    • 13d Jindal DP, Bedi V, Jit B, Karkra N, Guleria S, Bansal R, Palusczak A, Hartmann RW. Farmaco 2005; 60: 283
    • 13e Singh D, Baruah JB. Tetrahedron Lett. 2008; 49: 4374
    • 13f Ondrus V, Fisera L, Bradac V. ARKIVOC 2001; (v): 60
    • 13g Pohlmann J, Lampe T, Shimada M, Nell PG, Pernerstorfer J, Svenstrup N, Brunner NA, Schiffer G, Freiberg C. Bioorg. Med. Chem. Lett. 2005; 15: 1189
    • 13h Mishra BB, Kumar D, Mishra A, Mohapatra PP, Tiwari VK. Adv. Heterocycl. Chem. 2012; 107: 49
    • 13i Heravi MM, Shoar RH, Pedram L. J. Mol. Catal. A: Chem. 2005; 231: 89
    • 13j Kumar PP, Devi RB, Dubey PK. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2013; 52: 1166
    • 14a Khedkar MV, Khan SR, Sawant DN, Bagal DB, Bhanage BM. Adv. Synth. Catal. 2011; 353: 3415
    • 14b Wójcik P, Trzeciak AM. Appl. Catal., A 2018; 560: 73
    • 14c Hong C, Howard A. Org. Lett. 2010; 12: 4126
    • 14d Sawant DN, Wagh YS, Bhatte KD, Bhanage BM. Eur. J. Org. Chem. 2011; 6719
    • 14e Ji FH, Li JX, Li XW, Guo W, Wu W, Jiang H. J. Org. Chem. 2018; 83: 104
    • 14f Settimo AD, Primofiore G, Settimo FD, Simorini F, Motta CL, Martinelli A, Boldrini E. Eur. J. Med. Chem. 1996; 31: 49
    • 14g Crider AM, Kolczynski TM, Miskell DL. J. Pharm. Sci. 1981; 70: 192
    • 14h Mederski WW. K. R, Baumgarth M, Germann M, Kux D, Weitzel T. Tetrahedron Lett. 2003; 44: 2133
    • 14i Gonidec M, Amabilino DB, Veciana J. Dalton Trans. 2012; 41: 13632
    • 14j Gordan AJ, Ehrenkaufer RL. E. J. Org. Chem. 1971; 36: 44
    • 14k Manseri A, David G, Joly-Duhamel C, Boutevin B. J. Appl. Polym. Sci. 2010; 118: 1867
    • 15a Chigorina EA, Dotsenko VV, Krivokolysko SG. Chem. Heterocycl. Compd. 2011; 47: 913
    • 15b El Batran SA, Osman AE. N, Ismail MM, El Sayed AM. Inflammopharmacology 2006; 14: 62
  • 16 Weintraub PM, Sabol JS, Kane JM, Borcherding DR. Tetrahedron 2003; 59: 2953
  • 17 Popović-Đorđević JB, Ivanović MD, Kiricojević VD. Tetrahedron Lett. 2005;  46: 2611
    • 18a Mehri H, Plat M, Potier P. Ann. Pharm. Fr. 1971; 29: 291
    • 18b Guo L.-W, Zhou Y.-L. Phytochemistry 1993; 34: 563
    • 18c Ayer WA, Fukazawa Y, Singer PP. Tetrahedron Lett. 1973; 14: 5045
    • 18d Ramharter J, Weinstalb H, Mulzer J. J. Am. Chem. Soc. 2010; 132: 14338
  • 20 Zhang K, Meazza M, Dočekal V, Light ME, Veselý J, Rios R. Eur. J. Org. Chem. 2017; 1749
  • 21 Li X, Huang W, Liu YQ, Kang JW, Xia D, He G, Han B. J. Org. Chem. 2017; 82: 397
  • 22 Mondal S, Ghosh A, Mukherjee S, Biju AT. Org. Lett. 2018; 20: 4499
  • 23 For a review on NHC organocatalysis, see: Zhao C, Blaszczyk SA, Wang J. Green Synth. Catal. 2021; 2: 198
  • 24 Porey A, Santra S, Guin J. J. Org. Chem. 2019; 84: 5313
  • 25 Li Y, Li Z, Zhang Z. Mol. Catal. 2021; 513: 111790
  • 26 Goudedranche S, Bugaut X, Constantieux T, Bonne D, Rodriguez J. Chem. Eur. J. 2014; 20: 410
  • 27 Sanchez Duque MD. M, Baslé O, Isambert N, Gaudel-Siri A, Génisson Y, Plaquevent JC, Constantieux T. Org. Lett. 2011; 13: 3296
  • 28 For a review on thiourea-based organocatalyst, see: Parvin T, Yadav R, Choudhury LH. Org. Biomol. Chem. 2020;  18: 5513
    • 29a Brandau S, Landa A, Franzen J, Marigo M, Jørgensen KA. Angew. Chem. Int. Ed. 2006; 45: 4305
    • 29b Ma A, Zhu S, Ma D. Tetrahedron Lett. 2008; 49: 3075
  • 30 Hynes PS, Stupple PA, Dixon DJ. Org. Lett. 2008; 10: 1389
    • 31a Valero G, Schimer J, Cisarova I, Vesely J, Moyano A, Rios R. Tetrahedron Lett. 2009; 50: 1943
    • 31b Číhalová S, Valero G, Schimer J, Humpl M, Dračínský M, Moyano A, Vesely J. Tetrahedron 2011; 67: 8942
  • 32 Overview of organocatalysis: Dondoni A, Massi A. Angew. Chem. Int. Ed. 2008; 47: 4638
  • 33 Zhang Y, Liao Y, Liu X, Yao Q, Zhou Y, Lin L, Feng X. Chem. Eur. J. 2016; 22: 15119
  • 34 Bourin M, Chue P, Guillon Y. CNS Drug Rev. 2001; 7: 25
  • 35 Zhou Y, Wei YL, Rodriguez J, Coquerel Y. Angew. Chem. Int. Ed. 2019; 58: 456
    • 36a Popovic-Dordevic JB, Ivanovic MD, Kiricojevic VD. Tetrahedron Lett. 2005; 46: 2611
    • 36b Victory P, Jose D. Afinidad 1978; 35: 161 ; Chem. Abstr. 1978, 89, 179515j

      The Baylis–Hillman acetates were used for the preparation of glutarimides:
    • 37a Singh V, Yadav GP, Maulik PR, Batra S. Tetrahedron 2006; 62: 8731
    • 37b Chen CY, Chang MY, Hsu RT, Chen ST, Chang NC. Tetrahedron Lett. 2003; 44: 8627
  • 38 Basavaiah D, Reddy RJ. Org. Biomol. Chem. 2008; 6: 1034
  • 39 Basavaiah D, Lenin DV, Devendar B. Tetrahedron Lett. 2009; 50: 3538
  • 40 Wang L, Liu M, Lu M, Wang B, Han Q, Jin J, Guo H. Org. Chem. Front. 2023; 10: 813
  • 41 Multicomponent Reactions . Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005
  • 42 Shaabani A, Soleimani E, Khavasi HR, Hoffmann RD, Rodewald UC, Poettgen R. Tetrahedron Lett. 2006; 47: 5493
    • 43a Isonitrile Chemistry . Ugi I. Academic Press; London: 1971
    • 43b Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 43c Nair V, Rajesh C, Vinod AU, Bindu S, Speekanth AR, Mathen JS, Balagopal L. Acc. Chem. Res. 2003; 36: 899
    • 43d Dömling A. Chem. Rev. 2006; 106: 17
  • 44 Shaabani A, Teimouri MB, Mirzaei P, Bijanzadeh HR. J. Chem. Res. 2003; 27: 82
    • 45a Chang MY, Chang BR, Tai HM, Chang NC. Tetrahedron Lett. 2000; 41: 10273
    • 45b Chen HW, Hsu RT, Chang MY, Chang NC. Org. Lett. 2006; 8: 3033
    • 46a Fogliato G, Fronza G, Fuganti C, Grasselli P, Servi S. J. Org. Chem. 1995; 60: 5693
    • 46b Hartmann RW, Batzl C, Pongratz TM, Mannschreck A. J. Med. Chem. 1992; 35: 2210
    • 46c Harvey HA, Lipton A, Santin R. J. Cancer Res. (Suppl.) 1982; 42: 3261
    • 47a Silva LL, Joussef AC. J. Nat. Prod. 2011; 74: 1531
    • 47b Neves Filho RA, Westermann B, Wessjohann LA. Beilstein J. Org. Chem. 2011; 7: 1504
  • 48 Konstantinidou M, Kurpiewska K, Kalinowska-Tłuscik J, Dömling A. Eur. J. Org. Chem. 2018; 6714